Search results for "Weyl"

showing 10 items of 69 documents

Non-Linear Relativistic Evolution of Cosmological Perturbations in Irrotational Dust

2008

PhysicsWeyl tensorNonlinear systemsymbols.namesakeDeformation tensorCosmological modelssymbolsAstronomyConservative vector fieldMathematical physics
researchProduct

Gravito-magnetic vacuum spacetimes: kinematic restrictions

2003

We show that there are no vacuum solutions with a purely magnetic Weyl tensor with respect to an observer submitted to kinematic restrictions involving first order differential scalars. This result generalizes previous ones for the vorticity-free and shear-free cases. We use a covariant approach which makes evident that only the Bianchi identities are used and, consequently, the results are also valid for non vacuum solutions with vanishing Cotton tensor.

PhysicsWeyl tensorPhysics and Astronomy (miscellaneous)Cotton tensorFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)KinematicsFirst orderObserver (physics)General Relativity and Quantum Cosmologysymbols.namesakeGeneral Relativity and Quantum CosmologysymbolsCovariant transformationDifferential (mathematics)Mathematical physics
researchProduct

Obtaining the Weyl tensor from the Bel-Robinson tensor

2010

The algebraic study of the Bel-Robinson tensor proposed and initiated in a previous work (Gen. Relativ. Gravit. {\bf 41}, see ref [11]) is achieved. The canonical form of the different algebraic types is obtained in terms of Bel-Robinson eigen-tensors. An algorithmic determination of the Weyl tensor from the Bel-Robinson tensor is presented.

PhysicsWeyl tensorPhysics and Astronomy (miscellaneous)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum Cosmologysymbols.namesakeGeneral Relativity and Quantum CosmologyTensor (intrinsic definition)symbolsAlgebraic data typeCanonical formAlgebraic numberMathematics::Representation TheoryMathematical physics
researchProduct

Fredholm Spectra and Weyl Type Theorems for Drazin Invertible Operators

2016

In this paper we investigate the relationship between some spectra originating from Fredholm theory of a Drazin invertible operator and its Drazin inverse, if this does exist. Moreover, we study the transmission of Weyl type theorems from a Drazin invertible operator R, to its Drazin inverse S.

Pure mathematicsFredholm theoryDrazin invertible operatorGeneral MathematicsMathematics::Rings and Algebras010102 general mathematicsDrazin inverse010103 numerical & computational mathematicsType (model theory)01 natural sciencesFredholm theorylaw.inventionAlgebrasymbols.namesakeOperator (computer programming)Invertible matrixlawSettore MAT/05 - Analisi MatematicasymbolsBrowder and Weyl type theoremMathematics (all)0101 mathematicsMathematics
researchProduct

Local Spectral Properties Under Conjugations

2021

AbstractIn this paper, we study some local spectral properties of operators having form JTJ, where J is a conjugation on a Hilbert space H and $$T\in L(H)$$ T ∈ L ( H ) . We also study the relationship between the quasi-nilpotent part of the adjoint $$T^*$$ T ∗ and the analytic core K(T) in the case of decomposable complex symmetric operators. In the last part we consider Weyl type theorems for triangular operator matrices for which one of the entries has form JTJ, or has form $$JT^*J$$ J T ∗ J . The theory is exemplified in some concrete cases.

Pure mathematicsGeneral MathematicsConjugations010102 general mathematicsSpectral propertiesLocal spectral propertiesHilbert space010103 numerical & computational mathematicsType (model theory)01 natural sciencesWeyl-type theorems for upper triangular operator matricessymbols.namesakeOperator matrixSettore MAT/05 - Analisi MatematicaCore (graph theory)symbols0101 mathematicsMathematics
researchProduct

Weyl's Theorems and Extensions of Bounded Linear Operators

2012

A bounded operator $T\in L(X)$, $X$ a Banach space, is said to satisfy Weyl's theorem if the set of all spectral points that do not belong to the Weyl spectrum coincides with the set of all isolated points of the spectrum which are eigenvalues and having finite multiplicity. In this article we give sufficient conditions for which Weyl's theorem for an extension $\overline T$ of $T$ (respectively, for $T$) entails that Weyl's theorem holds for $T$ (respectively, for $\overline T$).

Pure mathematicsGeneral MathematicsSpectrum (functional analysis)Extension of bounded operators Weyl type theoremsBanach spaceMultiplicity (mathematics)Extension (predicate logic)Mathematics::Spectral TheoryBounded operatorSet (abstract data type)47A1047A1147A55Settore MAT/05 - Analisi MatematicaBounded function47A53Mathematics::Representation TheoryEigenvalues and eigenvectorsMathematics
researchProduct

Logarithmic bundles of deformed Weyl arrangements of type $A_2$

2016

We consider deformations of the Weyl arrangement of type $A_2$, which include the extended Shi and Catalan arrangements. These last ones are well-known to be free. We study their sheaves of logarithmic vector fields in all other cases, and show that they are Steiner bundles. Also, we determine explicitly their unstable lines. As a corollary, some counter-examples to the shift isomorphism problem are given.

Pure mathematicsLogarithmic sheavesLogarithmMSC: 52C35 14F05 32S22General Mathematics010102 general mathematicsType (model theory)Weyl arrangements01 natural sciences[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Algebraic GeometryComputer Science::GraphicsCorollary0103 physical sciencesFOS: Mathematics010307 mathematical physicsIsomorphism[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]0101 mathematicsRoot systemsLine arrangementsMSC 52C35 14F05 32S22Algebraic Geometry (math.AG)Mathematics
researchProduct

Toeplitz band matrices with small random perturbations

2021

We study the spectra of $N\times N$ Toeplitz band matrices perturbed by small complex Gaussian random matrices, in the regime $N\gg 1$. We prove a probabilistic Weyl law, which provides an precise asymptotic formula for the number of eigenvalues in certain domains, which may depend on $N$, with probability sub-exponentially (in $N$) close to $1$. We show that most eigenvalues of the perturbed Toeplitz matrix are at a distance of at most $\mathcal{O}(N^{-1+\varepsilon})$, for all $\varepsilon >0$, to the curve in the complex plane given by the symbol of the unperturbed Toeplitz matrix.

Pure mathematicsSpectral theoryGeneral Mathematics010103 numerical & computational mathematics01 natural sciencesMathematics - Spectral TheoryMathematics - Analysis of PDEsFOS: MathematicsAsymptotic formula0101 mathematicsSpectral Theory (math.SP)Eigenvalues and eigenvectorsMathematics010102 general mathematicsProbability (math.PR)Toeplitz matrixComplex normal distribution[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Weyl lawRandom perturbationsRandom matrixComplex planeSpectral theoryMathematics - ProbabilityNon-self-adjoint operators[MATH.MATH-SP]Mathematics [math]/Spectral Theory [math.SP]Analysis of PDEs (math.AP)
researchProduct

Some spectral mapping theorems through local spectral theory

2004

The spectral mapping theorems for Browder spectrum and for semi-Browder spectra have been proved by several authors [14], [29] and [33], by using different methods. We shall employ a local spectral argument to establish these spectral mapping theorems, as well as, the spectral mapping theorem relative to some other classical spectra. We also prove that ifT orT* has the single-valued extension property some of the more important spectra originating from Fredholm theory coincide. This result is extended, always in the caseT orT* has the single valued extension property, tof(T), wheref is an analytic function defined on an open disc containing the spectrum ofT. In the last part we improve a re…

Pure mathematicsSpectral theoryTransform theoryGeneral MathematicsSpectrum (functional analysis)Mathematical analysisExtension (predicate logic)Single valued extension property Weyl and semi-Browder operators spectral mapping theorems Weyl’s theoremFredholm theorySpectral linesymbols.namesakesymbolsSpectral theory of ordinary differential equationsAnalytic functionMathematicsRendiconti del Circolo Matematico di Palermo
researchProduct

Irreducibility of Hurwitz spaces of coverings with one special fiber and monodromy group a Weyl group of type D d

2007

Let Y be a smooth, connected, projective complex curve. In this paper, we study the Hurwitz spaces which parameterize branched coverings of Y whose monodromy group is a Weyl group of type D d and whose local monodromies are all reflections except one. We prove the irreducibility of these spaces when $$Y \simeq \mathbb {P}^{1}$$ and successively we extend the result to curves of genus g ≥  1.

Pure mathematicsWeyl groupGroup (mathematics)General MathematicsHurwitz spaces special fiber Weyl group of type D_dAlgebraic geometryType (model theory)Algebrasymbols.namesakeMathematics::Algebraic GeometryNumber theoryMonodromyGenus (mathematics)symbolsIrreducibilityMathematicsmanuscripta mathematica
researchProduct