Search results for "WiPhy2"

showing 1 items of 1 documents

Removal of Chromophore-proximal Polar Atoms Decreases Water Content and Increases Fluorescence in a Near Infrared Phytofluor

2015

Genetically encoded fluorescent markers have revolutionized cell and molecular biology due to their biological compatibility, controllable spatiotemporal expression, and photostability. To achieve in vivo imaging in whole animals, longer excitation wavelength probes are needed due to the superior ability of near infrared light to penetrate tissues unimpeded by absorbance from biomolecules or autofluorescence of water. Derived from near infrared-absorbing bacteriophytochromes, phytofluors are engineered to fluoresce in this region of the electromagnetic spectrum, although high quantum yield remains an elusive goal. An invariant aspartate residue is of utmost importance for photoconversion in…

chromophore binding domain (CBD)Analytical chemistryQuantum yieldPhotochemistryBiochemistry Genetics and Molecular Biology (miscellaneous)BiochemistryFluorescence spectroscopychemistry.chemical_compoundDeinococcus radioduransWiPhy2Side chainMolecular Biologylcsh:QH301-705.5Wisconsin infrared phytofluor (WiPhy2)Original ResearchBiliverdinta114Physicsta1182Excitation-emission matrix (EEM)ChromophorePhotobleachingFluorescenceexcitation-emission matrix (EEM)chemistrylcsh:Biology (General)Excited statetetrapyrroleFrontiers in Molecular Biosciences
researchProduct