Search results for "Wireless Sensor Network"

showing 10 items of 363 documents

Efficient distributed average consensus in wireless sensor networks

2020

International audience; Computing the distributed average consensus in Wireless Sensor Networks (WSNs) is investigated in this article. This problem, which is both natural and important, plays a significant role in various application fields such as mobile agents and fleet vehicle coordination, network synchronization, distributed voting and decision, load balancing of divisible loads in distributed computing network systems, and so on. By and large, the average consensus' objective is to have all nodes in the network converged to the average value of the initial nodes' measurements based only on local nodes' information states. In this paper, we introduce a fully distributed algorithm to a…

AtomicitySpeedupComputer Networks and CommunicationsSynchronization networksComputer sciencebusiness.industry020206 networking & telecommunications[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE]02 engineering and technologyEnergy consumptionLoad balancing (computing)[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation[INFO.INFO-IU]Computer Science [cs]/Ubiquitous Computing[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR]Consensus[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]Distributed algorithm0202 electrical engineering electronic engineering information engineering[INFO.INFO-ET]Computer Science [cs]/Emerging Technologies [cs.ET]020201 artificial intelligence & image processing[INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]businessWireless sensor networkComputer networkComputer Communications
researchProduct

Enabling Real-Time Computation of Psycho-Acoustic Parameters in Acoustic Sensors Using Convolutional Neural Networks

2020

Sensor networks have become an extremely useful tool for monitoring and analysing many aspects of our daily lives. Noise pollution levels are very important today, especially in cities where the number of inhabitants and disturbing sounds are constantly increasing. Psycho-acoustic parameters are a fundamental tool for assessing the degree of discomfort produced by different sounds and, combined with wireless acoustic sensor networks (WASNs), could enable, for example, the efficient implementation of acoustic discomfort maps within smart cities. However, the continuous monitoring of psycho-acoustic parameters to create time-dependent discomfort maps requires a high computational demand that …

Audio signalComputer scienceNoise pollutionbusiness.industryComputation010401 analytical chemistryReal-time computing01 natural sciencesConvolutional neural network0104 chemical sciencesWirelessElectrical and Electronic EngineeringbusinessInstrumentationWireless sensor networkIEEE Sensors Journal
researchProduct

Construction of Disjoint Virtual Backbones for Wireless Sensor Networks

2020

A wireless sensor network is a wireless network of sensors aimed at monitoring physical events. It has ingratiated itself into almost all areas of human endeavors. Data dissemination in these networks is quite challenging and is generally accomplished by flooding. But flooding introduces broadcast storm problem due from implosion and overlap. To overcome this, topology management can prescribe a virtual backbone network to which routing is confined. In this paper we propose an algorithm that constructs multiple disjoint virtual backbone networks, using only nodes' locations. The disjointedness makes routing more robust and the network exploitation energy efficient. Simulations show our algo…

Backbone networkWireless networkbusiness.industryComputer scienceComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKS05 social sciences030204 cardiovascular system & hematologyConnected dominating setFlooding (computer networking)03 medical and health sciences[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI]0302 clinical medicine0502 economics and business050211 marketingRouting (electronic design automation)[INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]Broadcast radiationbusinessWireless sensor networkDisseminationComputingMilieux_MISCELLANEOUSComputer network
researchProduct

RoadMic: Road Surface Monitoring Using Vehicular Sensor Networks with Microphones

2010

Road surface analysis including pothole reports is an important problem for road maintainers and drivers. In this paper we propose a methodology for pothole detection using mobile vehicles equipped with off the shelf microphone and global positioning devices attached to an on-board computer. The approach is generic enough to be extended for other kind of event detection using different sensors as well. The vehicles are driving on public streets and measuring pothole induced sound signals. Our approach was tested and evaluated by real world experiments in a road segment for which we had established the ground truth beforehand. The results show pothole detection with high accuracy despite the…

Background noiseComputer scienceMicrophonebusiness.industryComputerSystemsOrganization_MISCELLANEOUSElectro-optical sensorRoad surfaceReal-time computingGlobal Positioning SystemMobile wireless sensor networkPotholebusinessWireless sensor network
researchProduct

Multimode WSN: Improving Robustness, Fault Tolerance and Performance of Randomly Deployed Wireless Sensor Network

2010

This paper proposes an advanced, robust and flexible solution that applies the (revised) concept of Always Best Connected (ABC) Network, typical of multimode modern mobile devices, to Wireless Sensor Network. Hostile environments and unpredictable conditions (e.g. interferences) can negatively affect communication range, potentially increasing the number of unconnected nodes in random deployments. Multimode Wireless Sensor Network (MM-WSN) is provided with an adaptive mechanism for environmental condition evaluation and with the ability of self-configuring itself for optimal networking independence of detected conditions. Proposed solution is based on advanced smart nodes provided with mult…

Base stationKey distribution in wireless sensor networksWireless ad hoc networkRobustness (computer science)business.industryComputer scienceDistributed computingMobile wireless sensor networkWirelessNetwork performancebusinessWireless sensor networkComputer network2010 2nd International Conference on Computational Intelligence, Communication Systems and Networks
researchProduct

Predicting the Batteries' State of Health in Wireless Sensor Networks Applications

2018

[EN] The lifetime of wireless sensor networks deployments depends strongly on the nodes battery state of health (SoH). It is important to detect promptly those motes whose batteries are affected and degraded by ageing, environmental conditions, failures, etc. There are several parameters that can provide significant information of the battery SoH, such as the number of charge/discharge cycles, the internal resistance, voltage, drained current, temperature, etc. The combination of these parameters can be used to generate analytical models capable of predicting the battery SoH. The generation of these models needs a previous process to collect dense data traces with sampled values of the batt…

Battery (electricity)EnergyState of healthComputer science020209 energyProcess (computing)Battery02 engineering and technologyInternal resistanceWireless sensor networksReliability engineeringState of health (SoH)TECNOLOGIA ELECTRONICAMicrocontrollerHardware_GENERALControl and Systems EngineeringModels0202 electrical engineering electronic engineering information engineeringComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMSElectrical and Electronic EngineeringMicrocontrollersWireless sensor networkVoltage
researchProduct

Solar Inexhaustible Power Source for Wireless Sensor Node

2008

Currently the appearance of really low power wireless transceivers is motivating the use of renewable energies to power embedded wireless sensor nodes in many applications. Nevertheless, energy storage and its degradation still keep on being the main issues in the design of any battery powered device. We present an autonomous power source based on a new system architecture, which uses the energy scavenging to replenish two different rechargeable energy buffers instead of the conventional single one. Combining appropriately a degradable large backup battery (Lithium-Ion) and a shorter but non degradable storage element (Supercapacitor), the lifetime of the group can be widely extended to wha…

Battery (electricity)EngineeringBackup batterybusiness.industryEmbedded systemElectrical engineeringWirelessbusinessWireless sensor networkEnergy harvestingEnergy storageSolar powerRenewable energy2008 IEEE Instrumentation and Measurement Technology Conference
researchProduct

A method for modeling the battery state of charge in wireless sensor networks

2015

In this paper we propose a method for obtaining an analytic model of the battery State-of-Charge (SoC) in wireless sensor nodes. The objective is to find simple models that can be used to estimate accurately the real battery state and consequently the node lifetime. Running the model in the network nodes, we can provide the motes with the required information to implement applications that can be considered as battery-aware. The proposed methodology reduces the computational complexity of the model avoiding complicated electrochemical simulations and treating the battery as an unknown system with an output that can be predicted using simple mathematical models. At a first stage, during a se…

Battery (electricity)EngineeringEnergyMathematical modelbusiness.industryNode (networking)Real-time computingWireless sensor networksTECNOLOGIA ELECTRONICAKey distribution in wireless sensor networksMultilayer perceptronComputer Science::Networking and Internet ArchitectureElectronic engineeringMobile wireless sensor networkBatteries State-of-ChargeWirelessBatteries modelingElectrical and Electronic EngineeringbusinessInstrumentationWireless sensor network
researchProduct

An over-the-distance wireless battery charger based on RF energy harvesting

2017

An RF powered receiver silicon IC (integrated circuit) for RF energy harvesting is presented as wireless battery charger. This includes an RF-to-DC energy converter specifically designed with a sensitivity of -18.8 dBm and an energy conversion efficiency of ∼45% at 900 MHz with a transmitting power of 0.5 W in free space. Experimental results concerned with remotely battery charging using a complete prototype working in realistic scenarios will be shown.

Battery (electricity)EngineeringInternet of Things02 engineering and technologyIntegrated circuitInternet of Things; Litium Ion Battery; Radio Frequency Harvesting; Wireless Battery Charger; Wireless Sensor Networks; Hardware and Architecture; Electrical and Electronic Engineering; Modeling and SimulationSettore ING-INF/01 - ElettronicaRadio Frequency Harvestinglaw.inventionBattery chargerlawWireless Battery ChargerHardware_INTEGRATEDCIRCUITS0202 electrical engineering electronic engineering information engineeringElectronic engineeringElectrical and Electronic Engineeringbusiness.industry020208 electrical & electronic engineeringEnergy conversion efficiencyElectrical engineering020206 networking & telecommunicationsHardware and ArchitectureModeling and SimulationLitium Ion BatteryRadio frequencyInternet of ThingWireless Sensor NetworksbusinessEnergy harvestingSensitivity (electronics)Wireless sensor networkWireless Sensor Network2017 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)
researchProduct

Self-Powered IoT Device for Indoor Applications

2018

This paper presents a proof of concept for selfpowered Internet of Things (IoT) device, which is maintenance free and completely self-sustainable through energy harvesting. These IoT devices can be deployed in large scale and placed anywhere as long as they are in range of a gateway, and as long as there is sufficient light levels for the solar panel, such as indoor lights. A complete IoT device is designed, prototyped and tested. The IoT device can potentially last for more than 5 months (transmission interval of 30 seconds) on the coin cell battery (capacity of 120mAh) without any energy harvesting, sufficiently long for the dark seasons of the year. The sensor node contains ultra-low pow…

Battery (electricity)business.industryComputer science020209 energy020208 electrical & electronic engineeringElectrical engineering02 engineering and technologyTransmission (telecommunications)Proof of conceptSensor nodeDefault gateway0202 electrical engineering electronic engineering information engineeringWirelessbusinessWireless sensor networkEnergy harvesting2018 31st International Conference on VLSI Design and 2018 17th International Conference on Embedded Systems (VLSID)
researchProduct