Search results for "X-ray binary"

showing 2 items of 82 documents

Timing an Accreting Millisecond Pulsar: Measuring the Accretion Torque in IGR J00291+5934

2006

We performed a timing analysis of the fastest accreting millisecond pulsar IGR J00291+5934 using RXTE data taken during the outburst of December 2004. We corrected the arrival times of all the events for the orbital (Doppler) effects and performed a timing analysis of the resulting phase delays. In this way we have the possibility to study, for the first time in this class of sources, the spin-up of a millisecond pulsar as a consequence of accretion torques during the X-ray outburst. The accretion torque gives us for the first time an independent estimate of the mass accretion rate onto the neutron star, which can be compared with the observed X-ray luminosity. We also report a revised valu…

neutron; stars : magnetic fields; pulsars : general; pulsars : individual : IGR J00291+5934; X-ray : binaries [accretion accretion disks; stars]X-rays : binariesAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesAstrophysicsaccretion accretion diskAstrophysicsX-ray : binariesBinary pulsarLuminositypulsars : individual : IGR J00291+5934symbols.namesakePulsarMillisecond pulsarAstrophysics::Solar and Stellar Astrophysicspulsars : individual (IGR J00291+5934)PhysicsAccretion (meteorology)general; pulsars : individual (IGR J00291+5934); stars : magnetic fields; stars : neutron; X-rays : binaries [pulsars]Astrophysics (astro-ph)pulsars : generalStatic timing analysisAstronomystars : magnetic fieldAstronomy and Astrophysicsstars : neutronNeutron starSpace and Planetary SciencesymbolsAstrophysics::Earth and Planetary AstrophysicsDoppler effectX-ray pulsar
researchProduct

Spectra of high-mass X-ray binaries

2016

High-mass X-ray binaries are bright X-ray sources. The high-energy emission is caused by the accretion of matter from the massive companion onto a neutron star. The accreting material comes from either the strong stellar wind in binaries with supergiant companions or the circumstellar disk in Be/X-ray binaries. In either case, the H{alpha} line stands out as the main source of information about the state of the accreting material. We present the results of our monitoring program to study the long-term variability of the H{alpha} line in high-mass X-ray binaries. Our aim is to characterise the optical variability timescales and study the interaction between the neutron star and the accreting…

observational astronomyAstrophysics and AstronomyStellar AstronomyX-ray binary starsAstrophysics::High Energy Astrophysical PhenomenaPhysicsAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsX ray binary starsNatural SciencesAstrophysics::Galaxy AstrophysicsSpectroscopy
researchProduct