Search results for "X-rays."

showing 10 items of 443 documents

Pulsating in Unison at Optical and X-Ray Energies: Simultaneous High Time Resolution Observations of the Transitional Millisecond Pulsar PSR J1023+00…

2019

PSR J1023+0038 is the first millisecond pulsar discovered to pulsate in the visible band; such a detection took place when the pulsar was surrounded by an accretion disk and also showed X-ray pulsations. We report on the first high time resolution observational campaign of this transitional pulsar in the disk state, using simultaneous observations in the optical (TNG, NOT, TJO), X-ray (XMM-Newton, NuSTAR, NICER), infrared (GTC) and UV (Swift) bands. Optical and X-ray pulsations were detected simultaneously in the X-ray high intensity mode in which the source spends $\sim$ 70% of the time, and both disappeared in the low mode, indicating a common underlying physical mechanism. In addition, o…

AccretionAccretion disks-pulsars: Individual (psr j1023+0038)-stars: Neutron-X-rays: Binaries010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaPulsarAccretion discMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstrophysics::Instrumentation and Methods for AstrophysicsX-rayAstronomy and AstrophysicsTime resolutionAccretion (astrophysics)Space and Planetary ScienceVisible bandAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaThe Astrophysical Journal
researchProduct

Spectral and timing properties of IGR J00291+5934 during its 2015 outburst

2016

We report on the spectral and timing properties of the accreting millisecond X-ray pulsar IGR J00291+5934 observed by XMM-Newton and NuSTAR during its 2015 outburst. The source is in a hard state dominated at high energies by a comptonization of soft photons ($\sim0.9$ keV) by an electron population with kT$_e\sim30$ keV, and at lower energies by a blackbody component with kT$\sim0.5$ keV. A moderately broad, neutral Fe emission line and four narrow absorption lines are also found. By investigating the pulse phase evolution, we derived the best-fitting orbital solution for the 2015 outburst. Comparing the updated ephemeris with those of the previous outbursts, we set a $3��$ confidence leve…

AccretionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesPulsar0103 physical sciencesneutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [Accretion; Accretion discs; Stars]Emission spectrumSpectroscopy010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsAstronomy and AstrophysicOrbital periodX-rays: binarieStars: neutronNeutron starAmplitude13. Climate actionSpace and Planetary ScienceAccretion discAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)Monthly Notices of the Royal Astronomical Society
researchProduct

NuSTAR and NICER reveal IGR J17591-2342 as a new accreting millisecond X-ray pulsar

2018

We report the discovery by the Nuclear Spectroscopic Telescope Array (NuSTAR) and the Neutron Star Interior Composition Explorer (NICER) of the accreting millisecond X-ray pulsar IGR J17591-2342. Coherent X-ray pulsations around 527.4 Hz (1.9 ms) with a clear Doppler modulation were detected. This implies an orbital period of ∼8.8 h and a projected semi-major axis of ∼1.23 lt-s. With the binary mass function, we estimate a minimum companion mass of 0.42 M, obtained assuming a neutron star mass of 1.4[subscript ⊙] and an inclination angle lower than 60°, as suggested by the absence of eclipses or dips in the light curve of the source. The broad-band energy spectrum, obtained by combining NuS…

AccretionAstrophysics::High Energy Astrophysical Phenomenageneral [Pulsars]FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral linelaw.inventionTelescopeX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsarlow-mass [Stars]lawstars: low-mass0103 physical sciencesStars: low-maAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Neutron Star Interior Composition Explorer010308 nuclear & particles physicsComputer Science::Information Retrievalaccretion disksneutron [Stars]Astronomy and AstrophysicsAstronomy and AstrophysicOrbital periodLight curveX-rays: binarieStars: neutronNeutron starPulsars: generalAccretion diskSpace and Planetary ScienceAccretion disksbinaries [X-rays]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-ray pulsar
researchProduct

Broad-band spectral analysis of the accreting millisecond X-ray pulsar SAX J1748.9-2021

2016

We analyzed a 115 ks XMM-Newton observation and the stacking of 8 days of INTEGRAL observations, taken during the raise of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1748.9-2021. The source showed numerous type-I burst episodes during the XMM-Newton observation, and for this reason we studied separately the persistent and burst epochs. We described the persistent emission with a combination of two soft thermal components, a cold thermal Comptonization component (~2 keV) and an additional hard X-ray emission described by a power-law (photon index ~2.3). The continuum components can be associated with an accretion disc, the neutron star (NS) surface and a thermal Compton…

AccretionBinaries - X-rayAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesIndividualAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesakeSettore FIS/05 - Astronomia E AstrofisicaPulsarSAX J1748.9-2021Millisecond pulsarAccretion discs -X-ray0103 physical sciencesAccretion; Accretion discs -X-rays; Binaries - X-rays; Galaxies -X-rays; Individual; SAX J1748.9-2021; Space and Planetary Science; Astronomy and Astrophysics010306 general physics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSolar massMillisecondAstronomyAstronomy and AstrophysicsAccretion (astrophysics)Neutron starSpace and Planetary ScienceGalaxies -X-rayEddington luminositysymbolsAstrophysics - High Energy Astrophysical PhenomenaX-ray pulsar
researchProduct

Timing of the accreting millisecond pulsar IGR J17591-2342: evidence of spin-down during accretion

2020

We report on the phase-coherent timing analysis of the accreting millisecond X-ray pulsar IGR J17591-2342, using Neutron Star Interior Composition Explorer (NICER) data taken during the outburst of the source between 2018 August 15 and 2018 October 17. We obtain an updated orbital solution of the binary system. We investigate the evolution of the neutron star spin frequency during the outburst, reporting a refined estimate of the spin frequency and the first estimate of the spin frequency derivative ($\dot{\nu} \sim -7\times 10^{-14}$ Hz s$^{-1}$), confirmed independently from the modelling of the fundamental frequency and its first harmonic. We further investigate the evolution of the X-ra…

AccretionIGR J17591-2342Astrophysics::High Energy Astrophysical PhenomenaMagnetosphereFOS: Physical sciencesAstrophysics01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsar0103 physical sciencesaccretion accretion disc stars: neutron X-rays: binaries010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Neutron Star Interior Composition Explorer010308 nuclear & particles physicsAstronomy and Astrophysicsneutron [Stars]Accretion (astrophysics)Magnetic fieldNeutron starAmplitudeSpace and Planetary Sciencebinaries [X-rays]Astrophysics::Earth and Planetary AstrophysicsAccretion discAstrophysics - High Energy Astrophysical Phenomena
researchProduct

A Hard X-Ray View of Scorpius X-1 with INTEGRAL : Nonthermal Emission?

2006

We present here simultaneous INTEGRAL/RXTE observations of Sco X-1, and in particular a study of the hard X-ray emission of the source and its correlation with the position in the Z-track of the X-ray color-color diagram. We find that the hard X-ray (above about 30 keV) emission of Sco X-1 is dominated by a power-law component with a photon index of ~3. The flux in the power-law component slightly decreases when the source moves in the color-color diagram in the sense of increasing inferred mass accretion rate from the horizontal branch to the normal branch/flaring branch vertex. It becomes not significantly detectable in the flaring branch, where its flux has decreased by about an order of…

AccretionPhotonAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstrophysicsAstrophysics01 natural sciencesneutron starsX-ray[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Position (vector)Accretion DisksStars: Neutron0103 physical sciencesX-Rays: StarsAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)DiagramAstronomy and AstrophysicsSense (electronics)Horizontal branchX-Rays: BinariesX-Rays: GeneralSpace and Planetary ScienceVertex (curve)accreting millisecondStars: Individual: Constellation Name: Scorpius X-1Order of magnitudeThe Astrophysical Journal
researchProduct

INTEGRAL observations of the peculiar BeX System SAX J2103.5+4545

2004

We present an INTEGRAL data analysis of the X-ray transient \object{SAX J2103.5+4545} during two outbursts detected in December 2002. The INTEGRAL coordinates and error circle agree with the position of the recently proposed optical counterpart. A power-law plus cut-off model provided a good fit to the 4-150 keV spectrum yielding a photon index of 1.0+-0.1, a cut-off energy E_cut=7.6+-2.0 keV and a folding energy E_fold=30.9+-2.5 keV. The X-ray luminosity in the 4-150 keV energy range was found to be 6.0x10^36 erg/s, assuming a distance of 6.5 kpc. This luminosity, together with the derived photon index, indicate that the source is in a bright state. A 354.9$+-0.5 second pulse period is mea…

AccretionPhotonAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesValue (computer science)AstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICAAstrophysicsLuminosityPulse periodPosition (vector)X-raysBright statePhysicsRange (particle radiation)Astrophysics (astro-ph)BinariesSAX J2103.5+4545 [Pulsars]BeAstronomy and Astrophysics:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Space and Planetary ScienceAccretion disksUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogoniaEmission-lineAccretion ; Accretion disks ; Binaries ; Emission-line ; Be ; Pulsars : SAX J2103.5+4545 ; X-rays ; Binaries:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]Energy (signal processing)Astronomy & Astrophysics
researchProduct

Redshifted X-rays from the material accreting onto TW Hya: evidence of a low-latitude accretion spot

2017

High resolution spectroscopy, providing constraints on plasma motions and temperatures, is a powerful means to investigate the structure of accretion streams in CTTS. In particular, the accretion shock region, where the accreting material is heated to temperatures of a few MK as it continues its inward bulk motion, can be probed by X-ray spectroscopy. To attempt to detect for the first time the motion of this X-ray-emitting post-shock material, we searched for a Doppler shift in the deep Chandra/HETGS observation of the CTTS TW Hya. This test should unveil the nature of this X-ray emitting plasma component in CTTS, and constrain the accretion stream geometry. We searched for a Doppler shift…

AccretionTechniques: spectroscopicFOS: Physical sciencesAstrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesTW HydraeX-rays: starEmission spectrumSpectroscopy010303 astronomy & astrophysicsStars: variables: T TauriSolar and Stellar Astrophysics (astro-ph.SR)PhysicsPhotosphereLine-of-sight010308 nuclear & particles physicsHerbig Ae/BeAstronomy and AstrophysicsAstronomy and AstrophysicRedshiftAccretion (astrophysics)T Tauri starAstrophysics - Solar and Stellar AstrophysicsAccretion diskSpace and Planetary ScienceStars: pre-main sequence
researchProduct

Broadband X-ray spectral variability of the pulsing ULX NGC 1313 X-2

2021

[Context] It is thought that ultraluminous X-ray sources (ULXs) are mainly powered by super-Eddington accreting neutron stars or black holes as shown by the recent discovery of X-ray pulsations and relativistic winds. [Aims] This work presents a follow-up study of the spectral evolution over two decades of the pulsing ULX NGC 1313 X-2 in order to understand the structure of the accretion disc. The primary objective is to determine the shape and nature of the dominant spectral components by investigating their variability with the changes in the source luminosity. [Methods[ We performed a spectral analysis over the canonical 0.3-10.0 keV energy band of all the high signal-to-noise XMM-Newton…

AccretionULXsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)Astrophysicsindividuals: NGC 1313 X-2 [X-rays]Astrophysics::Cosmology and Extragalactic AstrophysicsSpectral lineSettore FIS/05 - Astronomia E AstrofisicaX-rays: Individuals: NGC 1313 X-2ThermalCutoffAstrophysics::Solar and Stellar AstrophysicsBlack-body radiationX-rays: BinariesAstrophysics::Galaxy AstrophysicsPhysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)Astronomy and AstrophysicsRadiusAccretion accretion disksNeutron starSpace and Planetary ScienceAccretion disksbinaries [X-rays]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaX-rays: individuals:NGC 1313 X-2
researchProduct

IGR J17503–2636: a candidate supergiant fast X-ray transient

2019

IGR J17503-2636 is a hard X-ray transient discovered by INTEGRAL on 2018 August 11. This was the first ever reported X-ray emission from this source. Following the discovery, follow-up observations were carried out with Swift, Chandra, NICER, and NuSTAR. We report in this paper the analysis and results obtained from all these X-ray data. Based on the fast variability in the X-ray domain, the spectral energy distribution in the 0.5-80 keV energy range, and the reported association with a highly reddened OB supergiant at ~10 kpc, we conclude that IGR J17503-2636 is most likely a relatively faint new member of the supergiant fast X-ray transients. Spectral analysis of the NuSTAR data revealed …

AccretionX-ray transientAstrophysics::High Energy Astrophysical PhenomenaCyclotronFOS: Physical sciencesAstrophysics01 natural scienceslaw.inventionbinaries [x-rays]X-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaMethods: observationalBinaries: closelaw0103 physical sciencesSpectral analysis010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)individuals: IGR J17503-2636 [X-rays]010308 nuclear & particles physicsScatteringAstronomy and AstrophysicsStars: neutronAccretion (astrophysics)Neutron starAccretion diskSpace and Planetary ScienceSpectral energy distributionSupergiantAstrophysics - High Energy Astrophysical PhenomenaAstronomy & Astrophysics
researchProduct