Search results for "X-rays: General"

showing 10 items of 30 documents

Suzaku broad-band spectrum of 4U 1705-44: probing the reflection component in the hard state

2015

Iron emission lines at 6.4-6.97 keV, identified with Kalpha radiative transitions, are among the strongest discrete features in the X-ray band. These are one of the most powerful probes to infer the properties of the plasma in the innermost part of the accretion disk around a compact object. In this paper we present a recent Suzaku observation, 100-ks effective exposure, of the atoll source and X-ray burster 4U 1705-44, where we clearly detect signatures of a reflection component which is distorted by the high-velocity motion in the accretion disk. The reflection component consists of a broad iron line at about 6.4 keV and a Compton bump at high X-ray energies, around 20 keV. All these feat…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicsline: formation line: identification stars: individual: 4U 1705-44 stars: neutron X-rays: binaries X-rays: generalAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBroad bandAstronomyAstronomy and AstrophysicsSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary Scienceformation line: identification stars: individual: 4U 1705-44 stars: neutron X-rays: binaries X-rays: general [line]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaHumanitiesAstrophysics::Galaxy Astrophysics
researchProduct

NuSTARandXMM–Newtonbroad-band spectrum of SAX J1808.4–3658 during its latest outburst in 2015

2018

The first discovered accreting millisecond pulsar, SAX J1808.4-3658, went into X-ray outburst in April 2015. We triggered a 100 ks XMM-Newton ToO, taken at the peak of the outburst, and a 55 ks NuSTAR ToO, performed four days apart. We report here the results of a detailed spectral analysis of both the XMM-Newton and NuSTAR spectra. While the XMM-Newton spectrum appears much softer than in previous observations, the NuSTAR spectrum confirms the results obtained with XMM-Newton during the 2008 outburst. We find clear evidence of a broad iron line that we interpret as produced by reflection from the inner accretion disk. For the first time, we use a self-consistent reflection model to fit the…

High Energy Astrophysical Phenomena (astro-ph.HE)line: formation line: identification stars: individual: SAX J1808.4-3658 stars: magnetic fields stars: neutron X-rays: binaries X-rays: generalPhysics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBroad bandAstronomy and AstrophysicsAstrophysics01 natural sciencesSpectral lineRadial velocityNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceMillisecond pulsarInclination angle0103 physical sciencesSpectral analysisAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsLine (formation)Monthly Notices of the Royal Astronomical Society
researchProduct

The long outburst of the black hole transient GRS 1716-249 observed in the X-ray and radio band

2018

We present the spectral and timing analysis of X-ray observations performed on the Galactic black hole transient GRS 1716-249 during the 2016-2017 outburst. The source was almost continuously observed with the Neil Gehrels Swift Observatory from December 2016 until October 2017. The X-ray hardness ratio and timing evolution indicate that the source approached the soft state three times during the outburst, even though it never reached the canonical soft spectral state. Thus, GRS 1716-249 increases the number of black hole transients showing outbursts with "failed" state transition. During the softening events, XRT and BAT broadband spectral modeling, performed with thermal Comptonization pl…

PhotonAstrophysics::High Energy Astrophysical Phenomenablack hole physicsFOS: Physical sciencesAstrophysicsCompact starX-rays: general01 natural sciencesRadio spectrumLuminositystars: jetsX-rays: binariesaccretionObservatory0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsRadiusaccretion discsBlack hole13. Climate actionSpace and Planetary Science[SDU]Sciences of the Universe [physics]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Fe K α and Fe K β line detection in the NuSTAR spectrum of the ultra-bright Z source Scorpius X-1

2021

Context.Low-mass X-ray binaries hosting a low-magnetised neutron star, which accretes matter via Roche-lobe overflow, are generally grouped into two classes called Atoll and Z sources after the path described in their X-ray colour-colour diagrams. Scorpius X–1 is the brightest persistent low-mass X-ray binary known so far, and it is the prototype of the Z sources.Aims.We analysed the firstNuSTARobservation of this source to study its spectral emission, exploiting the high-statistics data collected by this satellite. The colour-colour diagram shows that the source was probably observed during the lower normal and flaring branches of its Z track. We separated the data from the two branches in…

PhysicsAccretionAccretion (meteorology)Continuum (design consultancy)Astronomy and AstrophysicsContext (language use)AstrophysicsStars: individual: Scorpius X-1X-rays: generalSpectral lineStars: neutronNeutron starX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceOptical depth (astrophysics)Accretion disksBlack-body radiationLine (formation)
researchProduct

Disappearance of Hard X-Ray Emission in the Last BeppoSAX Observation of the Z Source GX 349+2

2003

We report on the results from two BeppoSAX observations of the Z source GX 349+2 performed in February 2001 and covering the broad energy range 0.12-200 keV. The light curve obtained from these observations shows a large flaring activity, the count rate varying from ~130 to ~260 counts/s, indicating that the source was in the flaring branch during these observations. The average spectrum is well described by a soft blackbody and a Comptonized component. To well fit the energy spectrum three gaussian lines are needed at 1.2 keV, 2.6 keV, and 6.7 keV with corresponding equivalent widths of 13 eV, 10 eV, and 39 eV, probably associated to L-shell emission of Fe XXIV, Ly-alpha S XVI, and Fe XXV,…

PhysicsAccretionRange (particle radiation)accretion disksAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)X-rayFOS: Physical sciencesX-rays: starsAstronomy and AstrophysicsAstrophysicsX-rays: generalAstrophysicsLight curveStars: neutronSpectral lineX-rays: binariesNeutron starAbsorption edgeSpace and Planetary ScienceAccretion accretion disks; Stars: neutron; X-rays: binaries; X-rays: general; X-rays: stars;Optical depth (astrophysics)Black-body radiationAstrophysical Journal
researchProduct

On the Spectral Evolution of Cygnus X-2 along its Color-Color Diagram

2002

We report on the results of a broad band (0.1-200 keV) spectral study of Cyg X-2 using two BeppoSAX observations taken in 1996 and 1997, respectively, for a total effective on-source time of ~100 ks. The color-color (CD) and hardness-intensity (HID) diagrams show that the source was in the horizontal branch (HB) and normal branch (NB) during the 1996 and 1997 observation, respectively. Five spectra were selected around different positions of the source in the CD/HID, two in the HB and three in the NB. These spectra are fit to a model consisting of a disk blackbody, a Comptonization component, and two Gaussian emission lines at ~1 keV and ~6.6 keV, respectively. The addition of a hard power-…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsColor–color diagramAstrophysicsRadiusHorizontal branchaccretion accretion disks / stars: individual: Cyg X–2 / stars: neutron / X-rays: stars / X-rays: binaries / X-rays: generalAstrophysicsSpectral lineLuminosityNOaccretionSpace and Planetary ScienceOptical depth (astrophysics)accretion disks / stars: individual: Cyg X–2 / stars: neutron / X-rays: stars / X-rays: binaries / X-rays: generalElectron temperatureEmission spectrum
researchProduct

A ionized reflecting skin above the accretion disk of GX 349+2

2009

The broad emission features in the Fe-Kalpha region of X-ray binary spectra represent an invaluable probe to constrain the geometry and the physics of these systems. Several Low Mass X-ray binary systems (LMXBs) containing a neutron star (NS) show broad emission features between 6 and 7 keV and most of them are nowi nterpreted as reflection features from the inner part of an accretion disk in analogy to those observed in the spectra of X-ray binary systems containing a Black Hole candidate. The NS LMXB GX 349+2 was observed by the XMM-Newton satellite which allows, thanks to its high effective area and good spectral resolution between 6 and 7 keV, a detailed spectroscopic study of the Fe-Ka…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsSpectral lineline: identification line: formation stars: individual GX 349+2 X-rays: binaries X-rays: generalBlack holeidentification line: formation stars: individual GX 349+2 X-rays: binaries X-rays: general [line]Neutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceEmission spectrumSpectral resolutionRelativistic quantum chemistryAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy AstrophysicsLine (formation)
researchProduct

The Chandra COSMOS Survey, I: Overview and Point Source Catalog

2009

The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra} program that has imaged the central 0.5 sq.deg of the COSMOS field (centered at 10h, +02deg) with an effective exposure of ~160ksec, and an outer 0.4sq.deg. area with an effective exposure of ~80ksec. The limiting source detection depths are 1.9e-16 erg cm(-2) s(-1) in the Soft (0.5-2 keV) band, 7.3e(-16) erg cm^-2 s^-1 in the Hard (2-10 keV) band, and 5.7e(-16) erg cm(-2) s(-1) in the Full (0.5-10 keV) band. Here we describe the strategy, design and execution of the C-COSMOS survey, and present the catalog of 1761 point sources detected at a probability of being spurious of <2e(-5) (1655 in the Full, 1340 in the Soft, and…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Cosmology and Nongalactic Astrophysics (astro-ph.CO)Field (physics)biologyInfraredPoint sourceFluxFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsLimitingbiology.organism_classificationAcisSpace and Planetary SciencePoint (geometry)Astrophysics - High Energy Astrophysical Phenomenacatalogs – cosmology: observations – galaxies: evolution – quasars: general – surveys – X-rays: generalCosmosAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

GRO J1744-28: an intermediate B-field pulsar in a low mass X-ray binary

2015

The bursting pulsar, GRO J1744-28, went again in outburst after $\sim$18 years of quiescence in mid-January 2014. We studied the broad-band, persistent, X-ray spectrum using X-ray data from a XMM-Newton observation, performed almost at the peak of the outburst, and from a close INTEGRAL observation, performed 3 days later, thus covering the 1.3-70.0 keV band. The spectrum shows a complex continuum shape that cannot be modelled with standard high-mass X-ray pulsar models, nor by two-components models. We observe broadband and peaked residuals from 4 to 15 keV, and we propose a self-consistent interpretation of these residuals, assuming they are produced by cyclotron absorption features and b…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Stars: individual: GRO J1744-28 -X-rays: binarieLine: identificationAstrophysics::High Energy Astrophysical PhenomenaCyclotronX-ray binaryFOS: Physical sciencesLine: formationAstronomy and AstrophysicsAstrophysicsX-rays: generalMagnetic fieldlaw.inventionSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary SciencelawIonizationHarmonicsThermalAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaLow Mass
researchProduct

The European Photon Imaging Camera on XMM-Newton: The MOS Cameras

2000

The EPIC focal plane imaging spectrometers on XMM-Newton use CCDs to record the images and spectra of celestial X-ray sources focused by the three X-ray mirrors. There is one camera at the focus of each mirror; two of the cameras contain seven MOS CCDs, while the third uses twelve PN CCDs, defining a circular field of view of 30 arcmin diameter in each case. The CCDs were specially developed for EPIC, and combine high quality imaging with spectral resolution close to the Fano limit. A filter wheel carrying three kinds of X-ray transparent light blocking filter, a fully closed, and a fully open position, is fitted to each EPIC instrument. The CCDs are cooled passively and are under full clos…

PhysicsInstrumentation: detectorPhotonSpectrometerbusiness.industryDynamic rangeAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomy and AstrophysicsField of viewAstrophysicsAstrophysicsX-rays: generalOpticsCardinal pointSpace and Planetary ScienceCalibrationSpectral resolutionbusinessFocus (optics)
researchProduct