Search results for "XENON"

showing 10 items of 172 documents

Present Status and Future Perspectives of the NEXT Experiment

2014

Gómez Cadenas, Juan José et al.

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsArticle SubjectDouble beta decay experimentchemistry.chemical_elementFOS: Physical sciencesNEXT7. Clean energy01 natural sciencesSignalMathematical SciencesTECNOLOGIA ELECTRONICANuclear physicsXenonDouble beta decay0103 physical sciences010306 general physicsphysics.ins-detPhysicsTime projection chamberIsotope010308 nuclear & particles physicsDetectorInstrumentation and Detectors (physics.ins-det)lcsh:QC1-999chemistryPhysical SciencesFísica nuclearlcsh:PhysicsEnergy (signal processing)
researchProduct

NEXT-100 Technical Design Report (TDR). Executive summary

2012

[EN] In this Technical Design Report (TDR) we describe the NEXT-100 detector that will search for neutrinoless double beta decay (ßß0v) in 136XE at the Laboratorio Subterráneo de Canfranc (LSC), in Spain. The document formalizes the design presented in our Conceptual Design Report (CDR): an electroluminescence time projection chamber, with separate readout planes for calorimetry and tracking, located, respectively, behind cathode and anode. The detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or 100 kg at 10 bar. This option builds in the capability to increase the total isotope mass by 50% while keeping the operating pressure at a manageable level. The readout pla…

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPhotomultiplierPhysics - Instrumentation and DetectorsBar (music)Time projection chambersFOS: Physical scienceschemistry.chemical_elementWavelength shifterTracking (particle physics)7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)chemistry.chemical_compoundXenonOptics0103 physical sciences010306 general physicsInstrumentationMathematical PhysicsPhysicsTime projection chamber010308 nuclear & particles physicsbusiness.industryDetectorFísicaTetraphenyl butadieneDetectorsInstrumentation and Detectors (physics.ins-det)Gas detectorsDetectors de gasoschemistryDetector design and construction technologies and materialsbusinessJournal of Instrumentation
researchProduct

Initial results of NEXT-DEMO, a large-scale prototype of the NEXT-100 experiment

2013

NEXT-DEMO is a large-scale prototype of the NEXT-100 detector, an electroluminescent time projection chamber that will search for the neutrinoless double beta decay of Xe-136 using 100-150 kg of enriched xenon gas. NEXT-DEMO was built to prove the expected performance of NEXT-100, namely, energy resolution better than 1% FWHM at 2.5MeV and event topological reconstruction. In this paper we describe the prototype and its initial results. A resolution of 1.75% FWHM at 511 keV (which extrapolates to 0.8% FWHM at 2.5 MeV) was obtained at 10 bar pressure using a gamma-ray calibration source. Also, a basic study of the event topology along the longitudinal coordinate is presented, proving that it…

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPhysics - Instrumentation and DetectorsBar (music)Isòtops radioactius -- DesintegracióTime projection chambersPattern recognition SystemsFOS: Physical scienceschemistry.chemical_elementElectron7. Clean energy01 natural sciencesNuclear physicsTECNOLOGIA ELECTRONICAXenonCambres d'ionitzacióCluster analysisDouble beta decayPattern recognition0103 physical sciencesCalibrationReconeixement de formes (Informàtica)Calibratge010306 general physicsInstrumentationMathematical PhysicsRadioisotopes -- DecayPhysicsCalibration and fitting methodsTime projection chamber010308 nuclear & particles physicsDetectorCluster findingFísicaInstrumentation and Detectors (physics.ins-det)Double-beta decay detectorsAnàlisi de conglomeratschemistryCalibrationEvent (particle physics)Ionization Chambers
researchProduct

Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements

2013

[EN] The "Neutrino Experiment with a Xenon Time-Projection Chamber" (NEXT) is intended to investigate the neutrinoless double beta decay of Xe-136, which requires a severe suppression of potential backgrounds. An extensive screening and material selection process is underway for NEXT since the control of the radiopurity levels of the materials to be used in the experimental set-up is a must for rare event searches. First measurements based on Glow Discharge Mass Spectrometry and gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain) are described here. Activity results for natural radioactive chains and other common radionucl…

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASPhysics - Instrumentation and DetectorsGlow Discharge Mass SpectrometryPhysics::Instrumentation and Detectorschemistry.chemical_elementFOS: Physical sciencesGermanium01 natural sciences7. Clean energyTECNOLOGIA ELECTRONICANuclear physicsCambres d'ionitzacióXenonDouble beta decay0103 physical sciencesNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentInstrumentationDetectors de radiacióMathematical PhysicsPhysicsRadionuclideRadiation calculationsIonization chambers010308 nuclear & particles physicsTime projection Chambers (TPC)Gamma detectors (scintillators CZT HPG HgI etc)FísicaInstrumentation and Detectors (physics.ins-det)chemistryNuclear countersNeutrino
researchProduct

Imaging of a mixture of hyperpolarized 3He and 129Xe.

2004

Abstract With the use of hyperpolarized gases, a great number of experiments have been carried out in order to improve the diagnostics of the lung, both from a structural and a functional point of view. 3 He is best suited for structural studies, whereas 129 Xe gives more detailed information about the functionality of the lung because it enters the bloodstream. In this work, we propose the use of a gas mixture to perform consecutive analysis of lung structure and functionality upon the delivery of a single bolus of gas. We show images of a helium–xenon gas mixture in the presence of a small amount of liquid toluene in order to demonstrate how both nuclei can be detected independently, extr…

Magnetic Resonance SpectroscopyChemistryBiomedical EngineeringBiophysicsrespiratory systemIn Vitro TechniquesHeliumrespiratory tract diseasesLung structureMiceNuclear magnetic resonanceSingle bolusIsotopesAnimalsXenon IsotopesRadiology Nuclear Medicine and imagingComputer SimulationMouse LungLungBiomedical engineeringMagnetic resonance imaging
researchProduct

Using visual modelling to study the evolution of lizard coloration: sexual selection drives the evolution of sexual dichromatism in lacertids

2012

Sexual selection has been invoked as a major force in the evolution of secondary sexual traits, including sexually dimorphic colorations. For example, previous studies have shown that display complexity and elaborate ornamentation in lizards are associated with variables that reflect the intensity of intrasexual selection. However, these studies have relied on techniques of colour analysis based on human – rather than lizard – visual perception. Here, we use reflectance spectrophotometry and visual modelling to quantify sexual dichromatism considering the overall colour patterns of lacertids, a lizard clade in which visual signalling has traditionally been underrated. These objective method…

MaleSex CharacteristicsXenonVisual perceptiongenetic structuresDichromatismbiologyPigmentationLizardZoologyLizardsBody sizeBiological EvolutionModels BiologicalReflectivitySexual dimorphismSpectrophotometrybiology.animalSexual selectionAnimalsFemaleSelection GeneticCladeEcology Evolution Behavior and SystematicsJournal of Evolutionary Biology
researchProduct

Xenon Improves Neurologic Outcome and Reduces Secondary Injury Following Trauma in an In Vivo Model of Traumatic Brain Injury*

2014

Objectives: To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury and to determine whether application of xenon has a clinically relevant therapeutic time window. Design: Controlled animal study. Setting: University research laboratory. Subjects: Male C57BL/6N mice (n = 196). Interventions: Seventy-five percent xenon, 50% xenon, or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. Measurements and Main Results: Outcome following trauma was measured using 1) functional neurologic outcome score, 2) histological measurement of contusion volume, and 3) analysis of locomotor functio…

MaleXenonINTRACRANIAL-PRESSURE1110 NursingCritical Care and Intensive Care MedicineGAIT ABNORMALITIESXenonGaitIntracranial pressureintegumentary systemBrainGLYCINE SITEINTRACEREBRAL-HEMORRHAGED-ASPARTATE RECEPTORNeuroprotective AgentsTreatment OutcomeAnesthesiahead traumaneuroprotectionLife Sciences & BiomedicinePOTASSIUM CHANNELSLocomotioncirculatory and respiratory physiologyinorganic chemicalsTraumatic brain injurychemistry.chemical_elementNeuroprotection1117 Public Health and Health ServicesHead traumaCritical Care MedicineIn vivoGeneral & Internal MedicineAdministration InhalationmedicineAnimalscardiovascular diseasesIntracerebral hemorrhageScience & Technologybusiness.industry1103 Clinical Sciencesbrain injurymedicine.diseaseCONTROLLED CORTICAL IMPACTCOMPETITIVE-INHIBITIONEmergency & Critical Care MedicineMice Inbred C57BLDisease Models AnimalCOGNITIVE DEFICITSchemistryBrain InjuriesClosed head injurybusinessCLOSED-HEAD INJURYinert gasesCritical Care Medicine
researchProduct

Xenon improves long-term cognitive function, reduces neuronal loss and chronic neuroinflammation, and improves survival after traumatic brain injury …

2019

Background.Xenon is a noble gas with neuroprotective properties. We previously showed that xenon improves short and long-term outcomes in young adult mice after controlled cortical impact (CCI). This is a follow-up study investigating xenon’s effect on very long-term outcome and survival. Methods.C57BL/6N (n=72) young adult male mice received single CCI or sham surgery and were treated with either xenon (75%Xe:25%O2) or control gas (75% N2:25%O2). The outcomes used were: 1) 24-hour lesion volume and neurological outcome score; 2)contextual fear-conditioning at 2 weeks and 20 months; 3) corpus callosum white matter quantification; 4) immunohistological assessment of neuroinflammation and neu…

MaleXenonhippocampusnerve degenerationCorpus callosumBUPRENORPHINEneuroinflammationMice0302 clinical medicineCognition030202 anesthesiologyAnesthesiologyBrain Injuries TraumaticMedicineEPIDEMIOLOGYYoung adultmemory disordersNeuronstraumatic brain injurySham surgeryBrain3. Good healthD-ASPARTATE RECEPTORmedicine.anatomical_structureNeuroprotective AgentsAnesthesianeuroprotectionmedicine.symptomLife Sciences & BiomedicineTraumatic brain injuryHYPOPITUITARISMNeuroprotectionWhite matter03 medical and health sciencesANALGESIAINHALED XENONAnimalsgeneral anaesthesiaSurvival analysisHYPOTHERMIAInflammationScience & Technologybusiness.industry1103 Clinical SciencesHypothermiamedicine.diseaseCOMPETITIVE-INHIBITIONSurvival AnalysisMice Inbred C57BLPATHOLOGYDisease Models AnimalAnesthesiology and Pain MedicineChronic DiseasebusinessCognition Disorders030217 neurology & neurosurgeryWHITE-MATTER DAMAGEFollow-Up StudiesBritish journal of anaesthesia
researchProduct

High Voltage Insulation and Gas Absorption of Polymers in High Pressure Argon and Xenon Gases

2018

High pressure gas time projection chambers (HPGTPCs) are made with a variety of materials, many of which have not been well characterized in high pressure noble gas environments. As HPGTPCs are scaled up in size toward ton-scale detectors, assemblies become larger and more complex, creating a need for detailed understanding of how structural supports and high voltage insulators behave. This includes the identification of materials with predictable mechanical properties and without surface charge accumulation that may lead to field deformation or sparking. This paper explores the mechanical and electrical effects of high pressure gas environments on insulating polymers PTFE, HDPE, PEEK, POM …

Materials scienceArgonPhysics - Instrumentation and Detectors010308 nuclear & particles physicsFOS: Physical scienceschemistry.chemical_elementNoble gasHigh voltageInstrumentation and Detectors (physics.ins-det)01 natural sciencesCharacterization (materials science)High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Xenonchemistry0103 physical sciencesPeekSurface chargeNuclear Experiment (nucl-ex)Absorption (chemistry)Composite material010306 general physicsInstrumentationNuclear ExperimentMathematical Physics
researchProduct

A New Sensitive Technique for Laser Spectroscopic Studies of Radioactive Rare-Gas Isotopes

1987

The concept of laser ionization has been widely used in spectroscopy studies and for the detection of minute samples of atoms. Being based on ion counting, it avoids the sensitivity problems of conventional fluorescence spectroscopy, which are due to low detection efficiency and large background from scattered laser light. We report the first application of an alternative ionization scheme which we have developed for collinear laser spectroscopy on fast atomic beams /1/. Here the increase in sensitivity has considerably enlarged the range of isotopes very far from stability, for which nuclear moments and radii can be investigated in hyperfine structure and isotope shift measurements.

Materials scienceIsotopelawIonizationIsotopes of xenonPhysics::Atomic PhysicsAtomic physicsLaserSpectroscopyHyperfine structureFluorescence spectroscopylaw.inventionIon
researchProduct