Search results for "YEAST"

showing 2 items of 792 documents

Sng1 associates with Nce102 to regulate the yeast Pkh–Ypk signalling module in response to sphingolipid status

2016

International audience; All cells are delimited by biological membranes, which are consequently a primary target of stress-induced damage. Cold alters membrane functionality by decreasing lipid fluidity and the activity of membrane proteins. In Saccharomyces cerevisiae, evidence links sphingolipid homeostasis and membrane phospholipid asymmetry to the activity of the Ypk1/2 proteins, the yeast orthologous of the mammalian SGK1-3 kinases. Their regulation is mediated by different protein kinases, including the PDK1 orthologous Pkh1/2p, and requires the function of protein effectors, among them Nce102p, a component of the sphingolipid sensor machinery. Nevertheless, the mechanisms and the act…

0301 basic medicineMyriocinOrm2Saccharomyces-cerevisiaeMembrane propertiesFatty Acids MonounsaturatedGlycogen Synthase Kinase 3Bacteriocins[SDV.IDA]Life Sciences [q-bio]/Food engineeringHomeostasisPhosphorylationMicroscopy ConfocalbiologyEffectorPlasma-membraneActin cytoskeleton[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringPhospholipid translocationTransmembrane proteinCell biologyCold TemperatureBiochemistryP-type atpasesSignal transductionCold stressCell-wall integrityProtein BindingSignal TransductionProteins slm1Saccharomyces cerevisiae ProteinsPhospholipid translocationHigh-pressureSaccharomyces cerevisiaeImmunoblottingFluorescence PolarizationSaccharomyces cerevisiaeSignallingModels Biological3-Phosphoinositide-Dependent Protein Kinases03 medical and health sciencesBudding yeastMolecular BiologySphingolipids030102 biochemistry & molecular biologyTryptophan permeasePhospholipid flippingMembrane ProteinsCell Biologybiology.organism_classificationActin cytoskeletonSphingolipidYeast030104 developmental biologyMembrane proteinMutationPeptidesReactive Oxygen Species
researchProduct

Isolation and characterization of anavirulent Candida albicansyeast monomorphic mutant

2003

Mutagenesis of Candida albicans strain ATCC 26555 with N-methyl-nitro-N-nitrosoguanidine followed by plating on solid yeast nitrogen base-N-acetylglucosamine medium at 37 degrees C yielded colony morphology variants that were characterized as forming smooth colonies, in contrast to the rough colonies formed by the parental strain. One yeast monomorphic mutant, CAL4, was studied in detail. Strain CAL4 is defective in filamentous growth, unable to form hyphae or pseudohyphae in vivo and in vitro. These filamentous structures are not elicited by commonly used external stimuli such as serum. The mutant had no obvious alterations in its mannan, glucan or chitin content. The total quantity of non…

ElectrophoresisMaleVirulenceHyphaStrain (chemistry)biologyMutantCandidiasisMutagenesis (molecular biology technique)General Medicinebiology.organism_classificationYeastMicrobiologyFungal ProteinsCell wallMiceInfectious DiseasesCell WallCandida albicansMutationAnimalsCandida albicansMannanMedical Mycology
researchProduct