Search results for "Yablonovite"

showing 10 items of 14 documents

Real space observation of two-dimensional Bloch wave interferences in a negative index photonic crystal cavity

2008

We report here the direct observation of two-dimensional (2D) Bloch wave interferences in a negative index photonic crystal by using optical near-field microscopy techniques. The photonic crystal is formed by a defectless honeycomb lattice of air holes etched in III-V semiconductor slab. A scanning near-field optical microscope is used to visualize spatially, as well as spectrally, the light distribution inside the photonic crystal. The recorded near-field spectra and maps presented here unambiguously demonstrate the Bloch wave interferences within the photonic crystal. Then, the spectral and spatial evolution of these interferences allows us to recover experimentally the 2D band diagram of…

010302 applied physicsPhysicsbusiness.industryPhysics::OpticsMicrostructured optical fiberCondensed Matter Physics01 natural sciencesYablonoviteElectronic Optical and Magnetic MaterialsOpticsSemiconductorNegative refraction0103 physical sciencesMicroscopyBand diagram[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicsbusinessComputingMilieux_MISCELLANEOUSPhotonic crystalBloch wave
researchProduct

Exotic crystal superstructures of colloidal crystals in confinement.

2008

Colloidal model systems have been used for over three decades for investigating liquids, crystals, and glasses. Colloidal crystal superstructures have been observed in binary systems of repulsive spheres as well as oppositely charged sphere systems showing structures well known from atomic solids. In this work we study the structural transition of colloidal crystals under confinement. In addition to the known sequence of crystalline structures, crystal superstructures with dodecagonal and hexagonal symmetry are observed in one component systems. These structures have no atomic counterpart.

Condensed Matter::Quantum GasesCondensed Matter::Soft Condensed MatterCrystalColloidHexagonal symmetryMaterials scienceChemical physicsSPHERESStructural transitionColloidal crystalYablonovitePhysical review. E, Statistical, nonlinear, and soft matter physics
researchProduct

Fabrication of polarizing photonic crystal fibres and photonic crystal fibre tapers: Applications

2007

We report the fabrication of an anisotropic photonic crystal fibre with polarization properties and photonic crystal fibre tapers for supercontinuum generation. The anisotropy of the fibre was created by enlarging four airholes next to the silica core. Different polarization regimes as a function of the geometric parameters, including polarizing behaviour at 1.55 mum, were obtained. In the second part of the paper, we report the fabrication of photonic crystal fibre tapers. We present experimental results on supercontinuum generation in photonic crystal fibre tapers using quasi-continuous pump pulses of 7 ns duration at 532 nm and at 1064 nm.

FabricationBirefringenceMaterials sciencebusiness.industryPhysics::OpticsNonlinear opticsYablonoviteSupercontinuumSubwavelength-diameter optical fibreOpticsOptoelectronicsbusinessPhotonic-crystal fiberPhotonic crystal
researchProduct

Self-assembled three-dimensional inverted photonic crystals on a photonic chip

2017

Three dimensional photonic crystals (PhCs) exhibiting a full photonic band gap have high potential in optical signal processing and detector applications. However, the challenges in the integration of the 3D PhCs into photonic circuits have so far hindered their exploitation in real devices. This article demonstrates the fabrication of 3D PhCs exploiting the capillary directed self-assembly (CDSA) of monodisperse colloidal silica spheres, their inversion to silicon shells, and integration with silicon waveguides. The measured transmission characteristics agree with numerical predictions and provide strong indication of a full photonic band gap in the inverted 3D photonic crystals at wavelen…

Materials scienceFabricationSiliconPhysics::Opticschemistry.chemical_element02 engineering and technology01 natural scienceslaw.invention010309 opticsOpticslaw0103 physical sciencesMaterials ChemistryElectrical and Electronic EngineeringElectronic band structurePhotonic crystalbusiness.industryPhotonic integrated circuitSurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter PhysicsYablonoviteSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryOptoelectronicsPhotonics0210 nano-technologybusinessWaveguidephysica status solidi (a)
researchProduct

3D photonic crystal intermediate reflectors for enhanced light-trapping in tandem solar cells

2012

The concept of 3D photonic crystals embedded in tandem solar cells as intermediate reflective layers is investigated. Numerical as well as experimental results will be presented.

Materials scienceOpticsSolar cell efficiencyTandembusiness.industryPhysics::OpticsOptoelectronicsThin film solar cellMultijunction photovoltaic cellTrappingbusinessYablonovitePhotonic crystal
researchProduct

Dispersion properties and spatial solitons in photonic crystal fibres

2005

Materials sciencebusiness.industryDispersion (optics)OptoelectronicsbusinessYablonovitePhotonic crystal fibrePhotonic crystalPhotonic-crystal fiberProceedings of 2004 6th International Conference on Transparent Optical Networks (IEEE Cat. No.04EX804)
researchProduct

Vector Description of a Realistic Photonic Crystal Fiber

1998

Materials sciencebusiness.industryOptoelectronicsMicrostructured optical fiberElectrical and Electronic EngineeringCondensed Matter PhysicsbusinessYablonoviteAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPhotonic-crystal fiberPhotonic crystalOptics and Photonics News
researchProduct

Cantor-like fractal photonic crystal waveguides

2005

Abstract We propose a new class of one-dimensional (1D) photonic waveguides: the fractal photonic crystal waveguides (FPCWs). These structures are photonic crystal waveguides (PCWs) etched with fratal distribution of grooves such as Cantor bars. The transmission properties of the FPCWs are investigated and compared with those of the conventional 1D PCWs. It is shown that the FPCW transmission spectrum has self-similarity properties associated with the fractal distribution of grooves. Furthermore, FPCWs exhibit sharp localized transmissions peaks that are approximately equidistant inside the photonic band gap.

Materials sciencebusiness.industryPhysics::OpticsYablonoviteAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsTransmission propertiesOpticsFractalPhotonic crystal waveguidesTransmission (telecommunications)EquidistantElectrical and Electronic EngineeringPhysical and Theoretical ChemistryPhotonicsbusinessPhotonic crystalOptics Communications
researchProduct

Directionality of light emission in three-dimensional opal-based photonic crystals (Invited Paper)

2005

Experimental and theoretical studies of the emission directionality diagrams of a perylene dye covering the inner surface of three-dimensional opal-based photonic crystals with incomplete photonic bandgap are reported. Directionality diagram of emission intensity is interpreted in terms of the spontaneous emission suppression by photonic band gap and the emission enhancement due to photon focusing phenomenon. A theoretical model is based on the classical analysis of an angular distribution of the radiated power of a point dipole.

PhotonMaterials sciencebusiness.industryAstrophysics::High Energy Astrophysical PhenomenaPhysics::OpticsEffective radiated powerYablonoviteEmission intensityDipoleOpticsOptoelectronicsSpontaneous emissionLight emissionbusinessPhotonic crystalSPIE Proceedings
researchProduct

Experimental demonstration of Bloch mode parity change in photonic crystal waveguide

2004

We experimentally show coupling between two photonic crystal waveguide Bloch modes having a different parity. A monomode ridge waveguide etched in a silicon-on-insulator substrate and connecting to the photonic crystal waveguide allows us to excite the even Bloch mode. Transmission measurements, performed on a broad spectral range, show the even mode propagation along the defect line. Then, spectrally resolved near-field patterns obtained by using a scanning near-field optical microscope in collection mode for wavelengths, inside and outside the multimode region of the photonic crystal waveguide, clearly demonstrate coupling phenomenon between even and odd modes.

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiber[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Physics and Astronomy (miscellaneous)Guided-mode resonancebusiness.industryPhotonic integrated circuitPhysics::Optics02 engineering and technologyMicrostructured optical fiber021001 nanoscience & nanotechnology01 natural sciencesYablonoviteOptics0103 physical sciencesOptoelectronicsNear-field scanning optical microscopeRadiation mode010306 general physics0210 nano-technologybusinessComputingMilieux_MISCELLANEOUSPhotonic crystal
researchProduct