Search results for "Zigzag"

showing 10 items of 59 documents

DFT calculations of structures, 13C NMR chemical shifts, and Raman RBM mode of simple models of small-diameter zigzag (4,0) carboxylated single-walle…

2012

Linearly conjugated benzene rings (acenes), belt-shaped molecules (cyclic acenes), and models of single-walled carbon nanotubes (SWCNTs) with one carboxylic group at the open end were fully optimized at the B3LYP/6-31G* level of theory. These models were selected to obtain some insight into the nuclear isotropic changes resulting from systematically increasing the basic building units of open-tip-monocarboxylated SWCNTs. In addition, the position of radial breathing mode (RBM), empirically correlated with the SWCNT diameter, was directly related with the radius of model cyclic acene rings. A regular convergence of selected structural, NMR, and Raman parameters with the molecular system size…

ChemistryChemical shiftchemistry.chemical_elementGeneral ChemistryCarbon nanotubeCarbon-13 NMRlaw.inventionCondensed Matter::Materials Sciencechemistry.chemical_compoundsymbols.namesakeZigzagChemical physicsComputational chemistrylawPhysics::Atomic and Molecular ClusterssymbolsMoleculeGeneral Materials ScienceRaman spectroscopyAceneCarbonMagnetic Resonance in Chemistry
researchProduct

Confinement inside a Crystalline Sponge Induces Pyrrole To Form N−H⋅⋅⋅π Bonded Tetramers

2021

Based on the DFT‐level calculated molecular volume (V mol ) of pyrrole and its liquid density, pyrrole manifests the highest liquid density coefficient LD c (defined as [V mol • density • 0.6023]/FW) value of 0.7. Normal liquids have LD c < 0.63. This very high LD c is due to the strong N‐H … π interactions in solution and hence pyrrole can be considered to be a pseudo‐crystalline liquid. When trapped inside the confined space of the crystalline sponge a reorientation of the N‐H … π interaction is observed leading to specific cyclic N‐H … π tetramers and N‐H … π dimers, verified by single crystal X‐ray crystallographic and computational methods. These tetramers are of the same size as four …

Models MolecularCrystallography X-Ray010402 general chemistry01 natural sciencesCatalysiskemialliset sidoksetchemistry.chemical_compoundTetramerpyrrole tetramersupramolekulaarinen kemiaconfinement effectcrystalline sponge methodhost-guest chemistryMoleculePyrrolesHost–guest chemistryConfined spacePyrroleamiinitbiology010405 organic chemistryChemistryOrganic ChemistryIntermolecular forceGeneral Chemistrypolymeriabiology.organism_classification0104 chemical sciencesSpongeCrystallographyZigzagröntgenkristallografiaaggregatioChemistry – A European Journal
researchProduct

Structure of the new mineral sarrabusite, Pb5CuCl4(SeO3)4, solved by manual electron-diffraction tomography.

2012

The new mineral sarrabusite Pb5CuCl4(SeO3)4 has been discovered in the Sardinian mine of Baccu Locci, near Villaputzu. It occurs as small lemon–yellow spherical aggregates of tabular crystals (&lt; 10 µm) of less than 100 µm in diameter. The crystal structure has been solved from and refined against electron diffraction of a microcrystal. Data sets have been measured by both a manual and an automated version of the new electron-diffraction tomography technique combined with the precession of the electron beam. The sarrabusite structure is monoclinic and consists of (010) layers of straight chains formed by alternating edge-sharing CuO4Cl2 and PbO8 polyhedra parallel to the c axis, which sha…

CrystallographyPolyhedronElectron diffractionZigzagChemistryCathode rayPrecessionPrecession electron diffractionGeneral MedicineCrystal structureGeneral Biochemistry Genetics and Molecular BiologyMonoclinic crystal systemActa crystallographica. Section B, Structural science
researchProduct

Electronic properties of carbon nanotubes under torsion

2012

A computationally-effective approach for calculating the electromechanical behavior of SWNTs and MWNTs of the dimensions used in nano-electronic devices has been developed. It is a mixed finite element-tight-binding code carefully designed to realize significant time saving in calculating deformation-induced changes in electrical transport properties of the nanotubes. The effect of the MWNT diameter and chirality on the conductance after mechanical deformation was investigated. In case of torsional deformation results revealed the conductance of MWNTs to depend strongly on the diameter, since bigger MWNTs reach much earlier the buckling load under torsion their electrical conductivity chang…

Materials scienceTorsion (mechanics)ConductanceNanotechnologyGeneral ChemistryCarbon nanotubelaw.inventionSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineZigzagBucklinglawElectrical resistivity and conductivitycarbon nanotubes Numerical simulations Electromechanical behaviorGeneral Materials ScienceComposite materialElectrical conductorElectronic properties
researchProduct

Electrical conductance of carbon nanotubes with misaligned ends

2013

During a manufacturing process, when a straight carbon nanotube is placed on a substrate, e.g., production of transistors, its two ends are often misaligned. In this study, we investigate the effects of multiwall carbon nanotubes’ (MWCNTs) outer diameter and chirality on the change in conductance due to misalignment of the two ends. The length of the studied MWCNTs was 120 nm, while the diameters ranged between 4 and 7 nm. A mixed finite element-tight-binding approach was carefully designed to realize reduction in computational time by orders of magnitude in calculating the deformation-induced changes in the electrical transport properties of the nanotubes. Numerical results suggest that ar…

Materials scienceCarbon nanotube actuatorsBioengineeringMechanical properties of carbon nanotubesGeneral ChemistryCarbon nanotubeCondensed Matter PhysicsAtomic and Molecular Physics and OpticsCarbon nanotubes Electromechanical behavior Transport Properties Numerical Methodslaw.inventionSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineCarbon nanobudZigzagElectrical resistance and conductancePotential applications of carbon nanotubeslawModeling and SimulationGeneral Materials ScienceBallistic conduction in single-walled carbon nanotubesComposite material
researchProduct

N,N-Dicyclohexylnitramine

2016

Molecules of the title compound, C12H22N2O2, are composed of an nitramine group substituted by two cyclohexane rings. The cyclohexane rings have chair conformations, with the exocyclic C—N bonds in axial orientations. In the crystal, C—H...O hydrogen bonds connect the molecules intoC(6) [-101] zigzag chains.

nitraminescrystal structureHydrogen bondChemistryStereochemistryGeneral MedicineCrystal structure010402 general chemistry010403 inorganic & nuclear chemistry01 natural sciences0104 chemical sciencesCrystalCrystallographyZigzagGroup (periodic table)hydrogen bondslcsh:QD901-999lcsh:CrystallographyIUCrData
researchProduct

Evidence for Graphene Edges Beyond Zigzag and Armchair

2009

The edges of nanoscopic objects determine most of their properties. For this reason the edges of honeycomb carbon--always considered either zigzag- or armchair-like--need special attention. In this report we provide experimental evidence confirming a previous unexpected prediction: zigzag is a metastable edge, as its planar reconstruction lowers energy and forms the most stable graphene edge. Our evidence is based on re-analyzing a recent experiment. Since the reconstructed edge, along with other unconventional edges we discuss, has distinct chemical properties, this discovery urges for care in experiments and theory--we must enter the realm beyond zigzag and armchair.

Materials scienceCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsGrapheneFOS: Physical sciencesHoneycomb (geometry)NanotechnologyEdge (geometry)Condensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionPlanarZigzaglawMetastabilityMesoscale and Nanoscale Physics (cond-mat.mes-hall)High-resolution transmission electron microscopyNanoscopic scale
researchProduct

Computer-aided design of substrate integrated waveguide filters for microwave and millimeter-wave applications

2009

In this paper, a Computer-Aided Design (CAD) tool of Substrate Integrated Waveguide (SIW) filters for high frequency applications is described. Some synthesis techniques are successfully combined with a fast and accurate full-wave analysis method, thus designing several practical examples of in-line and cross-coupled SIW filters. Prototypes have been manufactured and measured showing good results for different filter topologies. A novel zigzag coupling scheme is proposed for SIW compact filters in order to achieve very restrictive specifications of ultra-wideband (UWB) systems.

CouplingEngineeringWaveguide (electromagnetism)Waveguide filterbusiness.industryElectrical engineeringFilter (signal processing)computer.software_genreZigzagExtremely high frequencyElectronic engineeringComputer Aided DesignbusinesscomputerMicrowave2009 European Microwave Conference (EuMC)
researchProduct

DFT calculation of structures and NMR chemical shifts of simple models of small diameter zigzag single wall carbon nanotubes (SWCNTs)

2011

Linearly conjugated benzene rings (acenes), belt‐shape molecules (cyclic acenes) and model single wall carbon nanotubes (SWCNTs) were fully optimized at the unrestricted level of density functional theory (UB3LYP/6‐31G*). The models of SWCNTs were selected to get some insight into the potential changes of NMR chemical shift upon systematic increase of the molecular size. The theoretical NMR chemical shifts were calculated at the B3LYP/pcS‐2 level of theory using benzene as reference. In addition, the change of radial breathing mode (RBM), empirically correlated with SWCNT diameter, was directly related with the radius of cyclic acenes. Both geometrical and NMR parameters were extrapolated t…

acenesbelt moleculesmodel (40) zigzag SWCNTnuclear isotropic shieldingDFTMagnetic Resonance in Chemistry
researchProduct

Solution and on-surface synthesis of structurally defined graphene nanoribbons as a new family of semiconductors.

2018

Graphene nanoribbons (GNRs) with various structures and properties can be synthesized in solution or on surface.

Materials scienceFabrication010405 organic chemistryGraphenebusiness.industryNanotechnologyGeneral ChemistryChemical vapor depositionCarbon nanotube010402 general chemistry01 natural sciences0104 chemical scienceslaw.inventionChemistryScanning probe microscopySemiconductorZigzaglawbusinessGraphene nanoribbonsChemical science
researchProduct