Search results for "Zinc."

showing 10 items of 1079 documents

CCDC 837061: Experimental Crystal Structure Determination

2012

Related Article: A.K.D.Dime, C.H.Devillers, H.Cattey, B.Habermeyer, D.Lucas|2012|Dalton Trans.|41|929|doi:10.1039/c1dt11330e

(515-bis(4-Methylphenyl)-10-phenylporphyrinato)-zinc(ii)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 912743: Experimental Crystal Structure Determination

2013

Related Article: C.H.Devillers,A.K.D.Dime,H.Cattey,D.Lucas|2013|Comptes Rendus Chimie|16|540|doi:10.1016/j.crci.2013.01.015

(Porphyrinato)-(pyridine)-zinc(ii)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 699607: Experimental Crystal Structure Determination

2009

Related Article: M.Jung, A.Sharma, D.Hinderberger, S.Braun, U.Schatzschneider, E.Rentschler|2009|Eur.J.Inorg.Chem.||1495|doi:10.1002/ejic.200801248

(mu2-4-(4455-Tetramethyl-45-dihydro-1H-imidazol-2-yl 3-oxide 1-oxyl)benzoato radical-OO')-(mu2-NNN'N'-tetrakis((1-(n-propyl)benzimidazol-2-yl)methyl)-2-oxidopropane-13-diamine-NN'N''N'''N''''N'''''OO)-di-zinc(ii) diperchlorate diethyl ether solvate sesquihydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 240640: Experimental Crystal Structure Determination

2005

Related Article: C.Miranda, F.Escarti, L.Lamarque, E.Garcia-Espana, P.Navarro, J.Latorre, F.Lloret, H.R.Jimenez, M.J.R.Yunta|2005|Eur.J.Inorg.Chem.||189|doi:10.1002/ejic.200400671

(mu~2~-369131619-Hexa-aza-111(35)-dipyrazolacycloicosaphane)-di-zinc(ii) diperchlorateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Structural, optical, and luminescence properties of ZnO:Ga optical scintillation ceramic

2018

This paper discusses the characteristics of ZnO and ZnO:Ga ceramics fabricated by uniaxial hot pressing. The short-wavelength transmission limit of zinc oxide ceramics is in the 370-nm region; the long-wavelength limit is determined by the free-charge-carrier concentration and lies in the interval from 5 to 9 μm. The total transmittance of such ceramics in the visible and near-IR regions is about 70% when the sample is 0.5 mm thick. The luminescence spectrum is represented by a broad emission band with maximum at 580 nm, having a defect nature. The introduction of 0.03–0.1 mass % gallium into the zinc oxide structure inhibits grain growth and increases the free-charge-carrier concentration …

010302 applied physicsMaterials scienceApplied MathematicsExcitonGeneral EngineeringAnalytical chemistrychemistry.chemical_elementZincHot pressing01 natural sciencesAtomic and Molecular Physics and Optics010309 opticsComputational MathematicsGrain growthchemistryvisual_art0103 physical sciencesTransmittancevisual_art.visual_art_medium:NATURAL SCIENCES:Physics [Research Subject Categories]CeramicGalliumLuminescenceJournal of Optical Technology
researchProduct

Zn-substituted iron oxide nanoparticles from thermal decomposition and their thermally treated derivatives for magnetic solid-phase extraction

2020

Abstract Controlled thermal decomposition of zinc and iron acetylacetonates in the presence of oleic acid and oleylamine provided surfactant-capped magnetic nanoparticles with narrow size distribution and the mean diameter of ≈15 nm. The combined study by XRD, XRF and Mossbauer spectroscopy revealed three important features of the as-prepared nanoparticles. First, the actual ratio of Zn:Fe was considerably lower in the product compared to the initial ratio of metal precursors (0.14 vs. 0.50). Second, a pure stoichiometric Zn-doped magnetite system, specifically of the composition Zn0.37Fe2.63O4, with no signatures of oxidation to maghemite was formed. Third, Zn2+ ions were distributed at bo…

010302 applied physicsMaterials scienceInorganic chemistryThermal decompositionMaghemitechemistry.chemical_element02 engineering and technologyThermal treatmentZincengineering.material021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistryOleylamine0103 physical sciencesengineeringMagnetic nanoparticles0210 nano-technologyIron oxide nanoparticlesMagnetiteJournal of Magnetism and Magnetic Materials
researchProduct

Gel combustion synthesis and magnetic properties of CoFe2O4, ZnFe2O4, and MgFe2O4 using 6-aminohexanoic acid as a new fuel

2020

Abstract For the first time, 6-aminohexanoic acid is used as an alternative fuel in the synthesis of the spinel ferrites with compositions CoFe2O4, ZnFe2O4 and MgFe2O4 using gel combustion synthesis with different oxidizer-to-fuel (O/F) ratios. The gel precursors were studied by differential thermal analysis and thermogravimetry (DTA/TG), which showed that the ignition temperature depends on the gel precursor, being around 230 °C, 130 °C and 275 °C for CoFe2O4, ZnFe2O4, and MgFe2O4, respectively. These results showed than the 6-aminohexanoic acid has an ignition temperature lower than the urea and the citric acid when were used in the synthesis of the spinel ferrites by gel combustion. More…

010302 applied physicsMaterials scienceSpinelAnalytical chemistryAutoignition temperature02 engineering and technologyengineering.material021001 nanoscience & nanotechnologyCondensed Matter PhysicsCombustion01 natural sciencesElectronic Optical and Magnetic MaterialsAdiabatic flame temperatureThermogravimetryZinc ferriteDifferential thermal analysis0103 physical sciencesengineeringFourier transform infrared spectroscopy0210 nano-technologyJournal of Magnetism and Magnetic Materials
researchProduct

Current Spreading Length and Injection Efficiency in ZnO/GaN-Based Light-Emitting Diodes

2019

We report on carrier injection features in light-emitting diodes (LEDs) based on nonintentionally doped-ZnO/p-GaN heterostructures. These LEDs consist of a ZnO layer grown by chemical-bath deposition (CBD) onto a p-GaN template without using any seed layer. The ZnO layer (~1- $\mu \text{m}$ thickness) consists of a dense collection of partially coalesced ZnO nanorods, organized in wurtzite phase with marked vertical orientation, whose density depends on the concentration of the solution during the CBD process. Due to the limited conductivity of the p-GaN layer, the recombination in the n-region is strongly dependent on the spreading length of the holes, ${L}_{h}$ , coming from the p-contact…

010302 applied physicsMaterials sciencebusiness.industryGallium nitrideHeterojunction01 natural sciencesSettore ING-INF/01 - ElettronicaElectronic Optical and Magnetic Materialslaw.inventionchemistry.chemical_compoundchemistrylawPhase (matter)0103 physical sciencesElectrodeOptoelectronicsNanorodChemical-bath deposition (CBD) contact injection current spreading length zinc oxide (ZnO) nanorods ZnO/GaN-based light-emitting diodes (LEDs) ZnO/GaN heterostructures.Electrical and Electronic EngineeringbusinessWurtzite crystal structureLight-emitting diodeDiode
researchProduct

Lattice sites of diffused gold and platinum in epitaxial ZnSe layers

2000

Abstract The lattice location of diffused gold and platinum in zinc selenide (ZnSe) epitaxial layers was studied using the Rutherford backscattering (RBS) channeling technique. Thin Au and Pt films were evaporated onto ZnSe samples. The Au/ZnSe samples were annealed at 525°C and the residual Au film was removed by etching. Channeling angular scan measurements showed that about 30% of Au atoms were close to substitutional site (displaced about 0.2 A). In the case of the Pt/ZnSe samples the annealing temperatures ranged from 600°C to 800°C. The Pt minimum yields along 〈1 0 0〉 direction were close to the random value, varying from 80% to 90%. The measured Pt angular scans along 〈1 0 0〉 and 〈1 …

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceScatteringAnnealing (metallurgy)chemistry.chemical_element02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnologyEpitaxy01 natural sciencessymbols.namesakechemistry.chemical_compoundCrystallographyTransition metalchemistry0103 physical sciencessymbolsZinc selenideRutherford scattering0210 nano-technologyPlatinumInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Electrochemical, Spectroelectrochemical, and Structural Studies of Mono- and Diphosphorylated Zinc Porphyrins and Their Self-Assemblies

2019

International audience; Three series of porphyrins containing a Zn(II) central metal ion and zero, one or two phosphoryl groups at the meso-positions of the macrocycle were characterized as to their electrochemical, spectroscopic and structural properties in non-aqueous media. The investigated compounds are represented as 5,15-bis(4'-R-phenyl)porphyrinatozinc, 10-(diethoxyphosphoryl)-5,15-bis(4'-R-phenyl)porphyrinatozinc and 5,15-bis(diethoxyphosphoryl)-10,20-bis(4'-R-phenyl)porphyrinatozinc, where R = OMe, Me, H or CN. Linear-free energy relationships are observed between the measured redox potentials at room temperature and the electronic nature of the substituents at the 5 and 15 meso-ph…

010405 organic chemistryChemistryInorganic chemistrychemistry.chemical_elementZinc010402 general chemistryElectrochemistry01 natural sciences0104 chemical sciencesInorganic ChemistryMetal[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryvisual_artvisual_art.visual_art_medium[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical Chemistry
researchProduct