Search results for "abelian"
showing 10 items of 208 documents
Principal Poincar\'e Pontryagin Function associated to some families of Morse real polynomials
2014
It is known that the Principal Poincar\'e Pontryagin Function is generically an Abelian integral. We give a sufficient condition on monodromy to ensure that it is an Abelian integral also in non generic cases. In non generic cases it is an iterated integral. Uribe [17, 18] gives in a special case a precise description of the Principal Poincar\'e Pontryagin Function, an iterated integral of length at most 2, involving logarithmic functions with only one ramification at a point at infinity. We extend this result to some non isodromic families of real Morse polynomials.
Alien limit cycles near a Hamiltonian 2-saddle cycle
2005
Abstract It is known that perturbations from a Hamiltonian 2-saddle cycle Γ can produce limit cycles that are not covered by the Abelian integral, even when it is generic. These limit cycles are called alien limit cycles. This phenomenon cannot appear in the case that Γ is a periodic orbit, a non-degenerate singularity, or a saddle loop. In this Note, we present a way to study this phenomenon in a particular unfolding of a Hamiltonian 2-saddle cycle, keeping one connection unbroken at the bifurcation. To cite this article: M. Caubergh et al., C. R. Acad. Sci. Paris, Ser. I 340 (2005).
Quasi-linear time computation of the abelian periods of a word
2012
Computing abelian periods in words
2011
International audience
An Arakelov inequality in characteristic p and upper bound of p-rank zero locus
2008
In this paper we show an Arakelov inequality for semi-stable families of algebraic curves of genus $g\geq 1$ over characteristic $p$ with nontrivial Kodaira-Spencer maps. We apply this inequality to obtain an upper bound of the number of algebraic curves of $p-$rank zero in a semi-stable family over characteristic $p$ with nontrivial Kodaira-Spencer map in terms of the genus of a general closed fiber, the genus of the base curve and the number of singular fibres. An extension of the above results to smooth families of Abelian varieties over $k$ with $W_2$-lifting assumption is also included.
Smooth structures on algebraic surfaces with cyclic fundamental group
1988
Automorphisms of hyperelliptic GAG-codes
2009
Abstract We determine the n –automorphism group of generalized algebraic-geometry codes associated with rational, elliptic and hyperelliptic function fields. Such group is, up to isomorphism, a subgroup of the automorphism group of the underlying function field.
Non-archimedean hyperbolicity and applications
2018
Inspired by the work of Cherry, we introduce and study a new notion of Brody hyperbolicity for rigid analytic varieties over a non-archimedean field $K$ of characteristic zero. We use this notion of hyperbolicity to show the following algebraic statement: if a projective variety admits a non-constant morphism from an abelian variety, then so does any specialization of it. As an application of this result, we show that the moduli space of abelian varieties is $K$-analytically Brody hyperbolic in equal characteristic zero. These two results are predicted by the Green-Griffiths-Lang conjecture on hyperbolic varieties and its natural analogues for non-archimedean hyperbolicity. Finally, we use …
Picard and the Italian Mathematicians: The History of Three Prix Bordin
2016
It is usually said that in the transition period between 19th and 20th centuries, French scholars (mainly Picard and Humbert) as well as Italian scholars (mainly Castelnuovo, Enriques and Severi) were interested in the study of algebraic surfaces, though using different methods.
Additivity of affine designs
2020
We show that any affine block design $$\mathcal{D}=(\mathcal{P},\mathcal{B})$$ is a subset of a suitable commutative group $${\mathfrak {G}}_\mathcal{D},$$ with the property that a k-subset of $$\mathcal{P}$$ is a block of $$\mathcal{D}$$ if and only if its k elements sum up to zero. As a consequence, the group of automorphisms of any affine design $$\mathcal{D}$$ is the group of automorphisms of $${\mathfrak {G}}_\mathcal{D}$$ that leave $$\mathcal P$$ invariant. Whenever k is a prime p, $${\mathfrak {G}}_\mathcal{D}$$ is an elementary abelian p-group.