Search results for "abelian"
showing 10 items of 208 documents
On James Hyde's example of non-orderable subgroup of $\mathrm{Homeo}(D,\partial D)$
2020
In [Ann. Math. 190 (2019), 657-661], James Hyde presented the first example of non-left-orderable, finitely generated subgroup of $\mathrm{Homeo}(D,\partial D)$, the group of homeomorphisms of the disk fixing the boundary. This implies that the group $\mathrm{Homeo}(D,\partial D)$ itself is not left-orderable. We revisit the construction, and present a slightly different proof of purely dynamical flavor, avoiding direct references to properties of left-orders. Our approach allows to solve the analogue problem for actions on the circle.
On 2-groups with no abelian subgroups of rank four
1975
The complex of words and Nakaoka stability
2005
We give a new simple proof of the exactness of the complex of injective words and use it to prove Nakaoka's homology stability for symmetric groups. The methods are generalized to show acyclicity in low degrees for the complex of words in "general position". Hm(§ni1;Z) = Hm(§n;Z) for n=2 > m where §n denotes the permutation group of n elements. An elementary proof of this fact has not been available in the literature. In the first section the complex C⁄(m) of abelian groups is studied which in de- gree n is freely generated by injective words of length n. The alphabet consists of m letters. The complex C⁄(m) has the only non vanishing homology in degree m (Theorem 1). This is a result of F.…
Extension of a Schur theorem to groups with a central factor with a bounded section rank
2013
Abstract A well-known result reported by Schur states that the derived subgroup of a group is finite provided its central factor is finite. Here we show that if the p-section rank of the central factor of a locally generalized radical group is bounded, then so is the p-section rank of its derived subgroup. We also give an explicit expression for this bound.
On the number of conjugacy classes of zeros of characters
2004
Letm be a fixed non-negative integer. In this work we try to answer the following question: What can be said about a (finite) groupG if all of its irreducible (complex) characters vanish on at mostm conjugacy classes? The classical result of Burnside about zeros of characters says thatG is abelian ifm=0, so it is reasonable to expect that the structure ofG will somehow reflect the fact that the irreducible characters vanish on a bounded number of classes. The same question can also be posed under the weaker hypothesis thatsome irreducible character ofG hasm classes of zeros. For nilpotent groups we shall prove that the order is bounded by a function ofm in the first case but only the derive…
A variation on theorems of Jordan and Gluck
2006
Abstract Gluck proved that any finite group G has an abelian subgroup A such that | G : A | is bounded by a polynomial function of the largest degree of the complex irreducible characters of G . This improved on a previous bound of Isaacs and Passman. In this paper, we present a variation of this result that looks at the number of prime factors. All these results, in turn, may be seen as variations on the classical theorem of Jordan on linear groups.
Asymptotics for the multiplicities in the cocharacters of some PI-algebras
2003
We consider associative PI-algebras over a field of characteristic zero. We study the asymptotic behavior of the sequence of multiplicities of the cocharacters for some significant classes of algebras. We also give a characterization of finitely generated algebras for which this behavior is linear or quadratic.
A Criterion for Attaining the Welch Bounds with Applications for Mutually Unbiased Bases
2008
The paper gives a short introduction to mutually unbiased bases and the Welch bounds and demonstrates that the latter is a good technical tool to explore the former. In particular, a criterion for a system of vectors to satisfy the Welch bounds with equality is given and applied for the case of MUBs. This yields a necessary and sufficient condition on a set of orthonormal bases to form a complete system of MUBs. This condition takes an especially elegant form in the case of homogeneous systems of MUBs. We express some known constructions of MUBs in this form. Also it is shown how recently obtained results binding MUBs and some combinatorial structures (such as perfect nonlinear functions an…
A note on the exterior centralizer
2009
The notion of the exterior centralizer \({C_G^{^\wedge}(x)}\) of an element x of a group G is introduced in the present paper in order to improve some known results on the non-abelian tensor product of two groups. We study the structure of G by looking at that of \({C_G^{^\wedge}(x)}\) and we find some bounds for the Schur multiplier M(G) of G.
Transitive permutation groups in which all derangements are involutions
2006
AbstractLet G be a transitive permutation group in which all derangements are involutions. We prove that G is either an elementary abelian 2-group or is a Frobenius group having an elementary abelian 2-group as kernel. We also consider the analogous problem for abstract groups, and we classify groups G with a proper subgroup H such that every element of G not conjugate to an element of H is an involution.