Search results for "acceleration"
showing 10 items of 345 documents
Data-based modeling of vehicle crash using adaptive neural-fuzzy inference system
2014
Vehicle crashes are considered to be events that are extremely complex to be analyzed from the mathematical point of view. In order to establish a mathematical model of a vehicle crash, one needs to consider various areas of research. For this reason, to simplify the analysis and improve the modeling process, in this paper, a novel adaptive neurofuzzy inference system (ANFIS-based) approach to reconstruct kinematics of colliding vehicles is presented. A typical five-layered ANFIS structure is trained to reproduce kinematics (acceleration, velocity, and displacement) of a vehicle involved in an oblique barrier collision. Subsequently, the same ANFIS structure is applied to simulate different…
Effects of gait speed on stability of walking revealed by simulated response to tripping perturbation
2013
The objective of this work was to study stability of walking over a range of gait speeds by means of muscle-driven simulations. Fast walking has previously been related to high likelihood of falling due to tripping. Various measures of stability have shown different relationships between walking speed and stability. These measures may not be associated with tripping, so it is unclear whether the increase in likelihood of falling is explicable by an increase in instability. Here, stability with respect to a constant tripping perturbation was quantified as the immediate passive response of torso to the perturbation. Subject-specific muscle-driven simulations of eight young healthy subjects wa…
In vivo vibrational wave propagation in human tibiae at different ages
1989
Vibrational wave propagation was tested in vivo on the tibial bone of both legs of 56 female volunteers. The impact was produced by a hammer with a force strain gauge and the response was monitored by two accelerometers. The peak amplitude of the accelerations, the velocity of the acceleration wave propagation and damping were analysed for comparison among the different age groups. The results showed significant negative correlations between age and the peak amplitude of acceleration, and the velocity of acceleration wave propagation (p less than 0.01). The damping time of the acceleration wave also had a negative correlation with age. These findings suggested that age differences were rela…
Similar planning strategies for whole-body and arm movements performed in the sagittal plane
2003
The present paper looks for kinematic similarities between whole-body and arm movements executed in the sagittal plane. Eight subjects performed sit-to-stand (STS) and back-to-sit (BTS) movements at their preferred speed in the sagittal plane. Kinematics analysis focused on shoulder motion revealed that STS was composed of a straight, forward displacement followed by a curved, upward displacement while BTS was characterized by a curved, downward and straight, backward displacement. Curvature of the upward displacement was significantly greater than the downward one. Analysis of shoulder-velocity profiles showed that movement duration was significantly longer for BTS compared with STS and th…
Initiating running barefoot: Effects on muscle activation and impact accelerations in habitually rearfoot shod runners
2016
Runners tend to shift from a rearfoot to a forefoot strike pattern when running barefoot. However, it is unclear how the first attempts at running barefoot affect habitually rearfoot shod runners. Due to the inconsistency of their recently adopted barefoot technique, a number of new barefoot-related running injuries are emerging among novice barefoot runners. The aim of this study was therefore to analyse the influence of three running conditions (natural barefoot [BF], barefoot with a forced rearfoot strike [BRS], and shod [SH]) on muscle activity and impact accelerations in habitually rearfoot shod runners. Twenty-two participants ran at 60% of their maximal aerobic speed while foot strik…
Influence of the structural components of artificial turf systems on impact attenuation in amateur football players
2019
AbstractThe purpose of this research was to evaluate the influence of the structural components of different 3rd generation artificial turf football field systems on the biomechanical response of impact attenuation in amateur football players. A total of 12 amateur football players (24.3 ± 3.7 years, 73.5 ± 5.5 kg, 178.3 ± 4.1 cm and 13.7 ± 4.3 years of sport experience) were evaluated on three third generation artificial turf systems (ATS) with different structural components. ATS were composed of asphalt sub-base and 45 mm of fibre height with (ATS1) and without (ATS2) elastic layer or compacted granular sub-base, 60 mm of fibre height without elastic layer (ATS3). Two triaxial accelerome…
The location of the tibial accelerometer does influence impact acceleration parameters during running
2016
Tibial accelerations have been associated with a number of running injuries. However, studies attaching the tibial accelerometer on the proximal section are as numerous as those attaching the accelerometer on the distal section. This study aimed to investigate whether accelerometer location influences acceleration parameters commonly reported in running literature. To fulfil this purpose, 30 athletes ran at 2.22, 2.78 and 3.33 m · s–1 with three accelerometers attached with double-sided tape and tightened to the participants’ tolerance on the forehead, the proximal section of the tibia and the distal section of the tibia. Time-domain (peak acceleration, shock attenuation) and frequency-doma…
Age-Related Differences in 100-m Sprint Performance in Male and Female Master Runners
2003
This study was undertaken to investigate age-related differences in the velocity and selected stride parameters in male and female master sprinters and to determine which stride characteristics were related to the overall decline in the performance of the 100 m with age.The performances of 70 finalists (males 40-88 yr, females 35-87 yr) at the European Veterans Athletics Championships were recorded using two high-speed cameras (200 Hz) with a panning video technique and distance markers at 10-m intervals. Velocity, stride length (SL), stride rate (SR), ground contact time (CT), and flight time (FT) during the acceleration, peak velocity, and deceleration phases of the 100-m race were determ…
The representation of gravitational force during drawing movements of the arm
1998
The purpose of the present experiment was to study the way in which the central nervous system (CNS) represents gravitational force (GF) during vertical drawing movements of the arm. Movements in four different directions: (a) upward vertical (0 degrees), (b) upward oblique (45 degrees), (c) downward vertical (180 degrees) and (d) downward oblique (135 degrees), and at two different speeds, normal and fast, were executed by nine subjects. Data analysis focused upon arm movement kinematics in the frontal plane and gravitational torques (GTs) exerted around the shoulder joint. Regardless of movement direction, subjects showed straight-line paths for both speed conditions. In addition, movemen…
The Temporal Structure of Vertical Arm Movements
2011
Import JabRef | WosArea Life Sciences and Biomedicine - Other Topics; International audience; The present study investigates how the CNS deals with the omnipresent force of gravity during arm motor planning. Previous studies have reported direction-dependent kinematic differences in the vertical plane; notably, acceleration duration was greater during a downward than an upward arm movement. Although the analysis of acceleration and deceleration phases has permitted to explore the integration of gravity force, further investigation is necessary to conclude whether feedforward or feedback control processes are at the origin of this incorporation. We considered that a more detailed analysis of…