Search results for "acetylation"

showing 10 items of 140 documents

DNA methylation and histone acetylation of rat methionine adenosyltransferase 1A and 2A genes is tissue-specific.

2000

Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosylmethionine (AdoMet). In mammals MAT activity derives from two separate genes which display a tissue-specific pattern of expression. While MAT1A is expressed only in the adult liver, MAT2A is expressed in non-hepatic tissues. The mechanisms behind the selective expression of these two genes are not fully understood. In the present report we have evaluated MAT1A and MAT2A methylation in liver and in other tissues, such as kidney, by methylation-sensitive restriction enzyme digestion of genomic DNA. Our data indicate that MAT1A is hypomethylated in liver and hypermethylated in non-expressing tissues. The opposite situ…

Blotting WesternBiologyIn Vitro TechniquesKidneyBiochemistryHistonesHistone methylationAnimalsRats WistarEpigenomicsDNA methylationMyocardiumAnti-acetylated H4Kidney metabolismAcetylationCell BiologyMethylationMethionine AdenosyltransferaseDNA MethylationMolecular biologyRatsBlotting SouthernHistoneHistone acetylationLiverOrgan SpecificityMethionine AdenosyltransferaseHistone methyltransferaseDNA methylationbiology.proteinMethionine adenosyltransferaseGene expressionSpleenThe international journal of biochemistrycell biology
researchProduct

Selective inhibition of HDAC6 regulates expression of the oncogenic driver EWSR1-FLI1 through the EWSR1 promoter in Ewing sarcoma

2021

Ewing sarcoma (EWS) is an aggressive bone and soft tissue tumor of children and young adults in which the principal driver is a fusion gene, EWSR1-FLI1. Although the essential role of EWSR1-FLI1 protein in the regulation of oncogenesis, survival, and tumor progression processes has been described in-depth, little is known about the regulation of chimeric fusion-gene expression. Here, we demonstrate that the active nuclear HDAC6 in EWS modulates the acetylation status of specificity protein 1 (SP1), consequently regulating the SP1/P300 activator complex binding to EWSR1 and EWSR1-FLI1 promoters. Selective inhibition of HDAC6 impairs binding of the activator complex SP1/P300, thereby inducing…

Cancer ResearchCarcinogenesisSarcoma EwingBiologymedicine.disease_causeHistone Deacetylase 6ArticleFusion genePaediatric cancerDownregulation and upregulationGeneticsmedicineHumansDoxorubicinPromoter Regions GeneticMolecular BiologyActivator (genetics)Proto-Oncogene Protein c-fli-1AcetylationOncogenesmedicine.diseaseTumor progressionFLI1Cancer researchSarcomaCarcinogenesismedicine.drug
researchProduct

Hepatitis C Virus Core Protein Inhibits Tumor Suppressor Protein Promyelocytic Leukemia Function in Human Hepatoma Cells

2005

Abstract Tumor suppressor protein promyelocytic leukemia (PML) is implicated in apoptosis regulation and antiviral response. PML localizes predominantly to PML-nuclear bodies (PML-NB), nuclear macromolecular complexes regulating tumor suppressor protein p53 activity. Consistent with the function of PML in the cellular antiviral response, PML-NBs represent preferential targets in viral infections. In the case of hepatitis C virus (HCV) infection, important characteristics are nonresponsiveness to IFN therapy and development of hepatocellular carcinoma. However, the mechanisms which lead to the development of hepatocellular carcinoma are largely unknown. Here, we show that HCV core protein lo…

Cancer ResearchCarcinoma HepatocellularTumor suppressor genevirusesApoptosisPromyelocytic Leukemia ProteinBiologyTransfectionmedicine.disease_causePromyelocytic leukemia proteinCell Line TumorCoactivatormedicineHumansProtein IsoformsPhosphorylationCell NucleusTumor Suppressor ProteinsViral Core ProteinsLiver NeoplasmsNuclear Proteinsvirus diseasesAcetylationFas receptorHepatitis Cdigestive system diseasesNeoplasm ProteinsOncologyApoptosisAcetylationbiology.proteinCancer researchPhosphorylationTumor Suppressor Protein p53CarcinogenesisTranscription FactorsCancer Research
researchProduct

Resveratrol-mediated apoptosis of hodgkin lymphoma cells involves SIRT1 inhibition and FOXO3a hyperacetylation

2012

Resveratrol (RSV), a plant-derived stilbene, induces cell death in Hodgkin lymphoma (HL)-derived L-428 cells in a dose-dependent manner (IC50 = 27 μM, trypan blue exclusion assay). At a lower range (25 μM), RSV treatment for 48 hr causes arrest in the S-phase of the cell cycle, while at a higher concentration range (50 μM), apoptosis can be detected, with activation of caspase-3. The histone/protein deacetylase SIRT1 has been described as a putative target of RSV action in other model systems, even though its role in cancer cells is still controversial. Here we show that RSV, at both concentration ranges, leads to a marked increase in p53, while a decrease of SIRT1 expression level, as well…

Cancer ResearchPathologymedicine.medical_specialtyProgrammed cell deathApoptosisCell Growth ProcessesBiologyS PhaseSirtuin 1Cell Line TumorStilbenesmedicineHumansbcl-2-Associated X ProteinB-LymphocytesDose-Response Relationship DrugCaspase 3Mantle zoneForkhead Box Protein O3Germinal centerAcetylationForkhead Transcription FactorsCell cycleGerminal CenterHodgkin DiseaseMolecular biologyOncologyResveratrolCell cultureApoptosisCancer cellLymph NodesLymphTumor Suppressor Protein p53International Journal of Cancer
researchProduct

Histone deacetylase inhibitors induce in human hepatoma HepG2 cells acetylation of p53 and histones in correlation with apoptotic effects

2007

This report shows that histone deacetylase inhibitors (HDACIs) induced apoptosis in human hepatoma HepG2 cells in a dose- and time-dependent manner. Trichostatin A (TSA), ITF2357 and suberoylanilide hydroxamic acid (SAHA), which were very effective agents, caused apoptotic effects after a lag phase of 12-16 h. In order to elucidate the mechanism of HDACIs action in HepG2 cells we have studied the effects of TSA, ITF2357 and SAHA on acetylation of p53 and histones H2A, H2B, H3 and H4. It was observed that HDACIs rapidly induced acetylation of these proteins, being the effects clearly visible already at 30 min of treatment at the same doses which caused apoptosis. Analysis of the immunocomple…

Cancer ResearchProgrammed cell deathCarcinoma Hepatocellularmedicine.drug_classAntineoplastic AgentsApoptosisBiologyHydroxamic AcidsHistonesCell Line TumorSettore BIO/10 - BiochimicamedicineHumansBenzothiazolesEnzyme InhibitorsRNA Small InterferingHistone AcetyltransferasesVorinostatHistone deacetylase inhibitors acetylation p53 histones apoptosis hepatoma cells.Liver NeoplasmsHistone deacetylase inhibitorAcetylationProto-Oncogene Proteins c-mdm2Molecular biologyHistone Deacetylase InhibitorsTrichostatin AHistoneOncologyPCAFAcetylationbiology.proteinHistone deacetylaseTumor Suppressor Protein p53DNA DamageToluenemedicine.drugInternational Journal of Oncology
researchProduct

Sodium phenylbutyrate induces apoptosis in human retinoblastoma Y79 cells: The effect of combined treatment with the topoisomerase I-inhibitor topote…

2001

Our results demonstrate that sodium phenylbutyrate, a compound with a low degree of toxicity, exerted a cytotoxic effect on human retinoblastoma Y79 cells in a time- and dose-dependent manner. Treatment of Y79 cells for 72 h with phenylbutyrate reduced cell viability by 63% at 2 mM and 90% at 4 mM. Cell death caused by phenylbutyrate exhibited the typical features of apoptosis, as shown by light and fluorescent microscopy. Western blot analysis demonstrated that exposure of Y79 cells to phenylbutyrate decreased the level of the antiapoptotic factor Bcl-2 and induced the activation of caspase-3, a key enzyme in the execution phase of apoptosis. Moreover, treatment with phenylbutyrate markedl…

Cancer ResearchProgrammed cell deathCell SurvivalBlotting WesternApoptosisPhenylbutyrateHistonesSettore BIO/10 - BiochimicamedicineTumor Cells CulturedHumansretinoblastoma apoptosis sodium phenylbutirateViability assayEnzyme InhibitorsbiologyCaspase 3TopoisomeraseRetinoblastomaSodium phenylbutyrateAcetylationDrug SynergismCell cyclePhenylbutyrateseye diseasesEnzyme ActivationOncologyProto-Oncogene Proteins c-bcl-2ApoptosisCaspasesbiology.proteinCancer researchTopotecanDrug Therapy CombinationTopoisomerase I InhibitorsTumor Suppressor Protein p53Topotecanmedicine.drug
researchProduct

pRb2/p130-E2F4/5-HDAC1-SUV39H1-p300 and pRb2/p130-E2F4/5-HDAC1-SUV39H1-DNMT1 multimolecular complexes mediate the transcription of estrogen receptor-…

2003

The estrogen receptor-alpha (ER) plays a crucial role in normal breast development and is also linked to development and progression of mammary carcinoma. The transcriptional repression of ER-alpha gene in breast cancer is an area of active investigation with potential clinical significance. However, the molecular mechanisms that regulate the ER-alpha gene expression are not fully understood. Here we show a new molecular mechanism of ER-alpha gene inactivation mediated by pRb2/p130 in ER-negative breast cancer cells. We investigated in vivo occupancy of ER-alpha promoter by pRb2/p130-E2F4/5-HDAC1-SUV39 H1-p300 and pRb2/p130-E2F4/5-HDAC1-SUV39H1-DNMT1 complexes, and provided a link between p…

Cancer ResearchTranscription GeneticEstrogen receptorHistone Deacetylase 1HistonesTumor Cells CulturedDNA (Cytosine-5-)-MethyltransferasesReceptorPromoter Regions GeneticE2F4Nuclear ProteinsAcetylationChromatinDNA-Binding ProteinsGene Expression Regulation NeoplasticReceptors Estrogenembryonic structuresDNA methylationFemalepRb2/p130; chromatin-modifying enzymes; estrogen receptor-alpha; breast carcinomabiological phenomena cell phenomena and immunityDNA (Cytosine-5-)-Methyltransferase 1medicine.medical_specialtyanimal structuresmedicine.drug_classMacromolecular SubstancesBreast NeoplasmsE2F4 Transcription FactorBiologyHistone DeacetylasesBreast cancerInternal medicineGeneticsmedicineEstrogen Receptor betaHumansMolecular BiologyEstrogen receptor betaE2F5 Transcription FactorRetinoblastoma-Like Protein p130Estrogen Receptor alphaProteinsMethyltransferasesDNA Methylationmedicine.diseasePhosphoproteinsRepressor Proteinsenzymes and coenzymes (carbohydrates)EndocrinologyEstrogenCancer researchTrans-ActivatorsEstrogen receptor alphaTranscription FactorsOncogene
researchProduct

Epigenetic Alterations Upstream and Downstream of p53 Signaling in Colorectal Carcinoma

2021

Simple Summary Colorectal cancer (CRC) belongs to the most common cancer types. It is well known that half of all CRC possess missense mutations in the TP53 tumor suppressor gene. However, the entire signaling cascade upstream and downstream of the p53 protein may also contribute to CRC development, if relevant players in this signaling cascade lost their function. Besides p53 loss-of-function by mutations, epigenetic changes (DNA methylation, post translational modifications of histones, micro-RNAs) play a vital role in CRC development. In the present review, we concentrated on the epigenetic modifications related to the entire p53 signal transduction cascade upstream and downstream of p53…

Cancer ResearchTumor suppressor genetumor suppressorUpstream and downstream (transduction)Reviewmedicine.disease_causeoncogenemicroRNAmedicineEpigeneticsneoplasmsRC254-282acetylationbiologymicro-RNANeoplasms. Tumors. Oncology. Including cancer and carcinogensMethylationdigestive system diseasesHistoneOncologyDNA methylationCancer researchbiology.proteinmethylationCarcinogenesiscarcinogenesissignal transductionCancers
researchProduct

2021

Late-stage colorectal cancer (CRC) is still a clinically challenging problem. The activity of the tumor suppressor p53 is regulated via posttranslational modifications (PTMs). While the relevance of p53 C-terminal acetylation for transcriptional regulation is well-defined, it is unknown whether this PTM controls mitochondrially mediated apoptosis directly. We used wild-type p53 or p53-negative human CRC cells, cells with acetylation-defective p53, transformation assays, CRC organoids, and xenograft mouse models to assess how p53 acetylation determines cellular stress responses. The topoisomerase-1 inhibitor irinotecan induces acetylation of several lysine residues within p53. Inhibition of …

Cancer ResearchbiologyEntinostatGeneral Medicinedigestive system diseasesIrinotecanchemistry.chemical_compoundHistoneOncologychemistryApoptosisAcetylationGeneticsCancer researchbiology.proteinTranscriptional regulationmedicineMolecular MedicineCREB-binding proteinCytotoxicitymedicine.drugMolecular Oncology
researchProduct

Complete 1H and 13C NMR assignments of clerodane diterpenoids of Salvia splendens.

2006

Unambiguous and complete assignments of 1H and 13C NMR chemical shifts for five clerodane diterpenes, four of them isolated from Salvia splendens (salviarin, splendidin and splenolides A and B) and one obtained by acetylation of splenolide A, are presented. The assignments are based on 2D shift-correlated [1H,1H–COSY, 1H,13C-gHSQC–1J(C,H) and 1H,13C-gHMBC-nJ(C,H) (n = 2 and 3)] and nuclear Overhauser effect (NOE) experiments. The conformation of the rings of these compounds is supported by the 3J(H,H) values and NOE results. Copyright © 2006 John Wiley & Sons, Ltd.

Carbon IsotopesMagnetic Resonance SpectroscopybiologyStereochemistryChemistryChemical shiftAcetylationGeneral ChemistryNuclear Overhauser effectCarbon-13 NMRSalviabiology.organism_classificationDiterpenes ClerodaneUnambiguous and complete assignments of 1H and 13C NMR chemical shifts for five clerodane diterpenes four of them isolated from Salvia splendens (salviarin splendidin and splenolides A and B) and one obtained by acetylation of splenolide A are presented. The assignments are based on 2D shiftcorrelated [1H1H–COSY 1H13C-gHSQC–1J(CH) and 1H13C-gHMBC-nJ(CH) (n = 2 and 3)] and nuclear Overhauser effect (NOE) experiments. The conformation of the rings of these compounds is supported by the 3J(HH) values and NOE results. Copyright  2006 John Wiley & Sons LtdClerodane DiterpenesProton NMRGeneral Materials ScienceSalviaHydrogenMagnetic resonance in chemistry : MRC
researchProduct