Search results for "action potential"

showing 10 items of 233 documents

Temporally precise control of single-neuron spiking by juxtacellular nanostimulation

2017

Temporal patterns of action potentials influence a variety of activity-dependent intra- and intercellular processes and play an important role in theories of neural coding. Elucidating the mechanisms underlying these phenomena requires imposing spike trains with precisely defined patterns, but this has been challenging due to the limitations of existing stimulation techniques. Here we present a new nanostimulation method providing control over the action potential output of individual cortical neurons. Spikes are elicited through the juxtacellular application of short-duration fluctuating currents (“kurzpulses”), allowing for the sub-millisecond precise and reproducible induction of arbitr…

Male0301 basic medicine2-amino-5-phosphopentanoic acidPatch-Clamp TechniquesTime FactorsPhysiologyComputer scienceAction Potentialsgenetics [Luminescent Proteins]pharmacology [Valine]metabolism [Cytoskeletal Proteins]Mice0302 clinical medicineCortex (anatomy)physiology [Action Potentials]genetics [Nerve Tissue Proteins]6-Cyano-7-nitroquinoxaline-23-dioneNeuronsGeneral Neurosciencepharmacology [Excitatory Amino Acid Antagonists]Valinephysiology [Neurons]medicine.anatomical_structurepharmacology [6-Cyano-7-nitroquinoxaline-23-dione]FemaleSpike (software development)Neuroinformaticsgenetics [Synapsins]Models NeurologicalBiophysicsMice TransgenicNerve Tissue ProteinsOptogenetics03 medical and health sciencesmedicinedrug effects [Neurons]Animalsmetabolism [Synapsins]ddc:610metabolism [Luminescent Proteins]activity regulated cytoskeletal-associated proteingenetics [Cytoskeletal Proteins]analogs & derivatives [Valine]metabolism [Nerve Tissue Proteins]drug effects [Action Potentials]Somatosensory CortexSynapsinsElectric StimulationOptogeneticsCytoskeletal ProteinsLuminescent Proteins030104 developmental biologynervous systemInnovative Methodologycytology [Somatosensory Cortex]NeuronWhole cellExcitatory Amino Acid AntagonistsNeuroscience030217 neurology & neurosurgeryJournal of Neurophysiology
researchProduct

Mild systemic inflammation and moderate hypoxia transiently alter neuronal excitability in mouse somatosensory cortex

2016

During the perinatal period, the brain is highly vulnerable to hypoxia and inflammation, which often cause white matter injury and long-term neuronal dysfunction such as motor and cognitive deficits or epileptic seizures. We studied the effects of moderate hypoxia (HYPO), mild systemic inflammation (INFL), or the combination of both (HYPO + INFL) in mouse somatosensory cortex induced during the first postnatal week on network activity and compared it to activity in SHAM control animals. By performing in vitro electrophysiological recordings with multi-electrode arrays from slices prepared directly after injury (P8–10), one week after injury (P13–16), or in young adults (P28–30), we investig…

Male0301 basic medicineAction PotentialsKainate receptorStimulationPotassium ChlorideMicechemistry.chemical_compound0302 clinical medicineHypoxia6-Cyano-7-nitroquinoxaline-23-dioneNeuronsAge FactorsInterleukin-1βElectrophysiologyEpileptiform activityNeurologyAnesthesiaCNQXNMDA receptorFemalemedicine.symptommedicine.drugmedicine.medical_specialtyAMPA receptorIn Vitro TechniquesBiologyBicucullineMulti-electrode arrayArticlelcsh:RC321-57103 medical and health sciencesInternal medicinemedicineAnimalsGABA-A Receptor Antagonistslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryInflammationSystemic inflammationSomatosensory CortexHypoxia (medical)BicucullineBarrel cortexMice Inbred C57BLDisease Models Animal030104 developmental biologyEndocrinology2-Amino-5-phosphonovalerateGene Expression Regulationchemistrynervous systemExploratory BehaviorExcitatory Amino Acid Antagonists030217 neurology & neurosurgeryNeurobiology of Disease
researchProduct

Sex Differences in the Neuroadaptations of Reward-related Circuits in Response to Subchronic Variable Stress

2018

Women are twice as likely to be diagnosed with major depressive disorder. However, fewer studies in rodent models of depression have used female animals, leading to a relative lack of understanding of the female brain’s response to stress, especially at a neural circuit level. In this study, we utilized a 6-day subchronic variable stress (SCVS) mouse model and measured novelty suppressed feeding as behavioral criteria to evaluate susceptibility to SCVS in male and female mice. First, we showed that SCVS induced a decrease in latency to eat (susceptible phenotype) in female mice, but not in males (resilient phenotype). After determining behavioral phenotypes, we investigated the firing activ…

Male0301 basic medicineAction Potentialsneuronal activityTissue Culture Techniques0302 clinical medicinePremovement neuronal activitylocus coeruleuNeuronsSex CharacteristicsNeuronal Plasticitymusculoskeletal neural and ocular physiologyGeneral NeuroscienceBrainPhenotypeVentral tegmental areamedicine.anatomical_structureMajor depressive disorderFemaleDisease Susceptibilitylateral habenulamedicine.drugmedicine.medical_specialtyCell typesex differenceventral tegmental areaBiologyArticle03 medical and health sciencesRewardDopamineInternal medicinemedicineAnimalsAction PotentialDepressive DisorderAnimalNeuronmedicine.diseaseMice Inbred C57BLElectrophysiology030104 developmental biologyEndocrinologynervous systemSettore BIO/14 - FarmacologiaLocus coeruleusTissue Culture Techniquemajor depressionStress Psychological030217 neurology & neurosurgeryNeuroscience
researchProduct

Reduced firing rates of pyramidal cells in the frontal cortex of APP/PS1 can be restored by acute treatment with levetiracetam

2020

Contains fulltext : 229488.pdf (Publisher’s version ) (Open Access) Contains fulltext : 229488pre.pdf (Author’s version preprint ) (Open Access) In recent years, aberrant neural oscillations in various cortical areas have emerged as a common physiological hallmark across mouse models of amyloid pathology and patients with Alzheimer's disease. However, much less is known about the underlying effect of amyloid pathology on single cell activity. Here, we used high-density silicon probe recordings from frontal cortex area of 9-month-old APP/PS1 mice to show that local field potential power in the theta and beta band is increased in transgenic animals, whereas single-cell firing rates, specifica…

Male0301 basic medicineAgingAlzheimer`s disease Donders Center for Medical Neuroscience [Radboudumc 1]LevetiracetamAction PotentialsamyloidoosiLocal field potentialAlzheimerin tautiAmyloid beta-Protein Precursor0302 clinical medicineBeta RhythmChemistryPyramidal CellsGeneral Neuroscienceamyloidfood and beveragesAmyloidosisPhenotypePathophysiologyFrontal Lobesingle cellmedicine.anatomical_structureLevetiracetamPyramidal cellAlzheimer’s diseasemedicine.drugNeuroinformaticspatofysiologiaAmyloidmouse modelTransgeneMice Transgenic03 medical and health sciencesAlzheimer Diseasemental disordersPresenilin-1medicineAnimalslocal field potential (LFP)hermosolutDisease Models Animal030104 developmental biologynervous systemfiring rateNeurology (clinical)Geriatrics and GerontologyNeuroscience030217 neurology & neurosurgeryDevelopmental BiologyNeurobiology of Aging
researchProduct

Spontaneous Cingulate High-Current Spikes Signal Normal and Pathological Pain States

2019

Prominent 7–12 Hz oscillations in frontal cortical networks in rats have been reported. However, the mechanism of generation and the physiological function of this brain rhythm have not yet been clarified. Multichannel extracellular field potentials of the ACC were recorded and analyzed using the current source density method in halothane-anesthetized rats. Spontaneous high-current spikes (HCSs) were localized in the deep part of layer II/III and upper part of layer V of the ACC. The frequency of HCSs in the ACC was 7–12 Hz, with an amplitude of 6.5 ± 0.76 mV/mm(2) and duration of 55.24 ± 2.43 ms. The power density significantly decreased (84.56 ± 6.93%, p < 0.05, t test) after pinching the…

Male0301 basic medicineThalamocortical dysrhythmiaAction PotentialsPain(+)-NaloxoneElectroencephalographyGyrus CinguliRats Sprague-Dawley03 medical and health sciences0302 clinical medicinemedicineNoxious stimulusAnimalsResearch ArticlesAnterior cingulate cortexNeuronsMorphinemedicine.diagnostic_testChemistryGeneral NeuroscienceDepolarizationHyperpolarization (biology)RatsAnalgesics Opioid030104 developmental biologymedicine.anatomical_structureMorphineNeuroscience030217 neurology & neurosurgerymedicine.drugThe Journal of Neuroscience
researchProduct

Neuronal nitric oxide synthase is involved in CB/TRPV1 signalling: Focus on control of hippocampal hyperexcitability

2017

Cannabinoids (CB), transient receptors potential vanilloid type 1 (TRPV1) and nitric oxide (NO) were found to be interlinked in regulating some neuronal functions such as membrane excitability and synaptic transmission. TRPV1 play a fundamental role since it represents a synaptic target for CB that triggers several downstream cellular pathways. In this regard, recent evidence report that TRPV1 could influence NO production by modulating neuronal NO synthase (nNOS) activity. In the present research, we pointed to manipulate nNOS function to assess its role on TRPV1 signalling in hyperexcitability conditions elicited in the dentate gyrus of hippocampal formation. The activation of TRPV1 recep…

Male0301 basic medicineTime FactorsAction PotentialsHippocampusStimulationNitric Oxide Synthase Type IHippocampal formationHippocampusSettore BIO/09 - Fisiologia0302 clinical medicineRosaniline DyesEnzyme InhibitorsChemistryElectrophysiologyNeurologyExcitatory postsynaptic potentialAnticonvulsantsSignal TransductionAgonistIndazolesmedicine.drug_classMorpholinesTRPV1TRPV Cation ChannelsMaximal Dentate ActivationNaphthalenesNeurotransmissionArginineTransient receptors potential vanilloid type 103 medical and health sciencesHippocampumedicineAnimalsRats WistarCannabinoidAnalysis of VarianceCannabinoidsDentate gyrusNitric oxideElectric StimulationBenzoxazinesRats030104 developmental biologynervous systemSensory System AgentsCannabinoids; Electrophysiology; Hippocampus; Maximal Dentate Activation; Nitric oxide; Transient receptors potential vanilloid type 1; Neurology; Neurology (clinical)Neurology (clinical)CapsaicinNeuroscience030217 neurology & neurosurgeryEpilepsy Research
researchProduct

Optogenetic Modulation of a Minor Fraction of Parvalbumin-Positive Interneurons Specifically Affects Spatiotemporal Dynamics of Spontaneous and Senso…

2017

Abstract Parvalbumin (PV) positive interneurons exert strong effects on the neocortical excitatory network, but it remains unclear how they impact the spatiotemporal dynamics of sensory processing in the somatosensory cortex. Here, we characterized the effects of optogenetic inhibition and activation of PV interneurons on spontaneous and sensory-evoked activity in mouse barrel cortex in vivo. Inhibiting PV interneurons led to a broad-spectrum power increase both in spontaneous and sensory-evoked activity. Whisker-evoked responses were significantly increased within 20 ms after stimulus onset during inhibition of PV interneurons, demonstrating high temporal precision of PV-shaped inhibition.…

Male0301 basic medicineTime FactorsCognitive NeurosciencePopulationAction PotentialsMice TransgenicSensory systemOptogeneticsSomatosensory system03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineLateral inhibitionEvoked Potentials SomatosensoryPhysical StimulationparvalbuminmedicineAnimalseducationmouseeducation.field_of_studyinterneuronsbiologyChemistrymusculoskeletal neural and ocular physiologyOriginal ArticlesSomatosensory CortexBarrel cortexMice Inbred C57BLOptogeneticsParvalbumins030104 developmental biologymedicine.anatomical_structureTouch Perceptionnervous systemCerebral cortexconnectivityVibrissaebiology.proteincerebral cortexFemaleMicroelectrodesNeuroscience030217 neurology & neurosurgeryParvalbuminCerebral Cortex
researchProduct

Phencyclidine inhibits the activity of thalamic reticular gamma-aminobutyric acidergic neurons in rat brain.

2014

Póster presentado en el IX Simposi de Neurobiologia Experimental, celebrado los días 22 y 23 de octubre de 2014 en Barcelona y organizado por la Societat Catalana de Biologia del Institut d'Estudis Catalans

MaleAction PotentialsPhencyclidinePrefrontal CortexLocal field potentialGABA AntagonistsThalamusthalamocortical networksNeural PathwaysmedicinePremovement neuronal activityAnimalsNMDA receptor antagonistsAntipsychotic drugsGABAergic NeuronsRats WistarPrefrontal cortexReceptorPhencyclidineClozapineBiological PsychiatryClozapineAnalysis of VarianceChemistryRatsschizophreniaElectrophysiologyParvalbuminspsychotic symptomsExcitatory postsynaptic potentialHallucinogensNeurosciencemedicine.drugBiological psychiatry
researchProduct

Nitric oxide modulates striatal neuronal activity via soluble guanylyl cyclase: an in vivo microiontophoretic study in rats.

2003

It is now well established that nitric oxide (NO) acts as a neuromodulator in the central nervous system. To assess the role of NO in modulating striatal activity, single-unit recording was combined with iontophoresis to study presumed spiny projection neurons in urethane-anesthetized male rats. Striatal neurons recorded were essentially quiescent and were therefore activated to fire by the iontophoretic administration of glutamate, pulsed in cycles of 30 sec on and 40 sec off. In this study, iontophoresis of 3-morpholinosydnonimine hydrochloride (SIN 1), a nitric oxide donor, produced reproducible, current-dependent inhibition of glutamate-induced excitation in 12 of 15 striatal neurons, r…

MaleAction PotentialsReceptors Cytoplasmic and NuclearPharmacologyMedium spiny neuronNitric OxideNitric oxideCellular and Molecular Neurosciencechemistry.chemical_compoundSoluble Guanylyl CyclasePremovement neuronal activityAnimalsRats WistarCyclic guanosine monophosphateNeuronsbiologyIontophoresisGlutamate receptorIontophoresisCorpus StriatumRatsNitric oxide synthasenervous systemchemistryBiochemistrySolubilityGuanylate CyclaseMolsidominebiology.proteinSoluble guanylyl cyclaseSynapse (New York, N.Y.)
researchProduct

Backfiring of the isolated rat phrenic nerve does not collide with impulse propagation following repetitive nerve stimulation at 1-50 Hz.

1991

Acetylcholinesterase inhibition with neostigmine in the isolated rat phrenic nerve-hemidiaphragm preparation induced axonal backfiring and repetitive compound muscle action potentials following single nerve stimulation. The duration of backfiring and the repetitive compound muscle action potentials did not exceed 55 ms. With repetitive nerve stimulation at frequencies ranging from 1 to 50 Hz, backfiring was present only with the first stimulus and the amplitude of the second compound muscle action potential was maximally reduced, while the subsequent responses recovered gradually. However, the amplitudes of the concommitant antidromic nerve action potentials remained unchanged during the en…

MaleAction potentialPhysiologyChemistryRefractory periodClinical BiochemistryAction PotentialsRats Inbred StrainsNeuromuscular junctionElectric StimulationCompound muscle action potentialAntidromicRatsPhrenic NerveElectrophysiologymedicine.anatomical_structurePhysiology (medical)medicineAnimalsRepetitive nerve stimulationNeurosciencePhrenic nervePflugers Archiv : European journal of physiology
researchProduct