Search results for "action potential"
showing 10 items of 233 documents
Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation.
2014
Exosomes are small membranous vesicles of endocytic origin that are released by almost every cell type. They exert versatile functions in intercellular communication important for many physiological and pathological processes. Recently, exosomes attracted interest with regard to their role in cell–cell communication in the nervous system. We have shown that exosomes released from oligodendrocytes upon stimulation with the neurotransmitter glutamate are internalized by neurons and enhance the neuronal stress tolerance. Here, we demonstrate that oligodendroglial exosomes also promote neuronal survival during oxygen–glucose deprivation, a model of cerebral ischaemia. We show the transfer from…
Neuronal Activity Drives Localized Blood-Brain-Barrier Transport of Serum Insulin-like Growth Factor-I into the CNS
2010
Upon entry into the central nervous system (CNS), serum insulin-like growth factor-1 (IGF-I) modulates neuronal growth, survival, and excitability. Yet mechanisms that trigger IGF-I entry across the blood-brain barrier remain unclear. We show that neuronal activity elicited by electrical, sensory, or behavioral stimulation increases IGF-I input in activated regions. Entrance of serum IGF-I is triggered by diffusible messengers (i.e., ATP, arachidonic acid derivatives) released during neurovascular coupling. These messengers stimulate matrix metalloproteinase-9, leading to cleavage of the IGF binding protein-3 (IGFBP-3). Cleavage of IGFBP-3 allows the passage of serum IGF-I into the CNS thro…
Purkinje cell loss and motor coordination defects in profilin1 mutant mice.
2012
Profilin1 is an actin monomer-binding protein, essential for cytoskeletal dynamics. Based on its broad expression in the brain and the localization at excitatory synapses (hippocampal CA3-CA1 synapse, cerebellar parallel fiber (PF)-Purkinje cell (PC) synapse), an important role for profilin1 in brain development and synapse physiology has been postulated. We recently showed normal physiology of hippocampal CA3-CA1 synapses in the absence of profilin1, but impaired glial cell binding and radial migration of cerebellar granule neurons (CGNs). Consequently, brain-specific inactivation of profilin1 by exploiting conditional mutants and Nestin-mediated cre expression resulted in a cerebellar hyp…
Cortical Temperature Change: A Tool for Modulating Brain States?12
2016
Reduction in temperature depolarizes neurons by a partial closure of potassium channels but decreases the vesicle release probability within synapses. Compared with cooling, neuromodulators produce qualitatively similar effects on intrinsic neuronal properties and synapses in the cortex. We used this similarity of neuronal action in ketamine-xylazine-anesthetized mice and non-anesthetized mice to manipulate the thalamocortical activity. We recorded cortical electroencephalogram/local field potential (LFP) activity and intracellular activities from the somatosensory thalamus in control conditions, during cortical cooling and on rewarming. In the deeply anesthetized mice, moderate cortical co…
Activity-Dependent Regulation of Neuronal Apoptosis in Neonatal Mouse Cerebral Cortex
2007
A massive neuronal loss during early postnatal development has been well documented in the murine cerebral cortex, but the factors that drive cells into apoptosis are largely unknown. The role of neuronal activity in developmental apoptosis was studied in organotypic neocortical slice cultures of newborn mice. Multielectrode array and whole-cell patch-clamp recordings revealed spontaneous network activity characterized by synchronized burst discharges, which could be blocked by tetrodotoxin and ionotropic glutamate receptor antagonists. The identical neuropharmacological manipulations also caused a significant increase in the number of apoptotic neurons as early as 6 h after the start of dr…
Paradoxical effect of increased diastolic Ca(2+) release and decreased sinoatrial node activity in a mouse model of catecholaminergic polymorphic ven…
2012
Background— Catecholaminergic polymorphic ventricular tachycardia is characterized by stress-triggered syncope and sudden death. Patients with catecholaminergic polymorphic ventricular tachycardia manifest sinoatrial node (SAN) dysfunction, the mechanisms of which remain unexplored. Methods and Results— We investigated SAN [Ca 2+ ] i handling in mice carrying the catecholaminergic polymorphic ventricular tachycardia–linked mutation of ryanodine receptor (RyR2 R4496C ) and their wild-type (WT) littermates. In vivo telemetric recordings showed impaired SAN automaticity in RyR2 R4496C mice after isoproterenol injection, analogous to what was observed in catecholaminergic polymorphic ventricul…
Thalamic Network Oscillations Synchronize Ontogenetic Columns in the Newborn Rat Barrel Cortex
2013
Neocortical areas are organized in columns, which form the basic structural and functional modules of intracortical information processing. Using voltage-sensitive dye imaging and simultaneous multi-channel extracellular recordings in the barrel cortex of newborn rats in vivo, we found that spontaneously occurring and whisker stimulation-induced gamma bursts followed by longer lasting spindle bursts were topographically organized in functional cortical columns already at the day of birth. Gamma bursts synchronized a cortical network of 300-400 µm in diameter and were coherent with gamma activity recorded simultaneously in the thalamic ventral posterior medial (VPM) nucleus. Cortical gamma b…
A Fly-Inspired Mushroom Bodies Model for Sensory-Motor Control Through Sequence and Subsequence Learning
2016
Classification and sequence learning are relevant capabilities used by living beings to extract complex information from the environment for behavioral control. The insect world is full of examples where the presentation time of specific stimuli shapes the behavioral response. On the basis of previously developed neural models, inspired by Drosophila melanogaster, a new architecture for classification and sequence learning is here presented under the perspective of the Neural Reuse theory. Classification of relevant input stimuli is performed through resonant neurons, activated by the complex dynamics generated in a lattice of recurrent spiking neurons modeling the insect Mushroom Bodies n…
Sequence Learning in a Single Trial: A Spiking Neurons Model Based on Hippocampal Circuitry.
2020
ABSTRACTIn contrast with our everyday experience using brain circuits, it can take a prohibitively long time to train a computational system to produce the correct sequence of outputs in the presence of a series of inputs. This suggests that something important is missing in the way in which models are trying to reproduce basic cognitive functions. In this work, we introduce a new neuronal network architecture that is able to learn, in a single trial, an arbitrary long sequence of any known objects. The key point of the model is the explicit use of mechanisms and circuitry observed in the hippocampus, which allow the model to reach a level of efficiency and accuracy that, to the best of our…
Topology of synaptic connectivity constrains neuronal stimulus representation, predicting two complementary coding strategies
2022
In motor-related brain regions, movement intention has been successfully decoded from in-vivo spike train by isolating a lower-dimension manifold that the high-dimensional spiking activity is constrained to. The mechanism enforcing this constraint remains unclear, although it has been hypothesized to be implemented by the connectivity of the sampled neurons. We test this idea and explore the interactions between local synaptic connectivity and its ability to encode information in a lower dimensional manifold through simulations of a detailed microcircuit model with realistic sources of noise. We confirm that even in isolation such a model can encode the identity of different stimuli in a lo…