Search results for "action."
showing 10 items of 25093 documents
Quasi-static behaviour and damage assessment of flax/epoxy composites
2015
Experimental investigations were conducted on flax and E-glass fibres reinforced epoxy matrix composites subjected to quasi-static loadings. Flax/epoxy samples having [0]12, [90]12, [0/90]3S and [±45]3S stacking sequences, with a fibre volume fraction of 43% have been tested under tension, compression and in-plane shear loadings. Overall, the compression strength of glass/epoxy was 76% greater than for the flax/epoxy composite. The damage evolution of flax/epoxy of [0/90]3S and [±45]3S samples has been evaluated in terms of transverse crack densities with respect to the load increment. The crack density exhibited a classical “S” shaped pattern for [0/90]3S and linearly for [±45]3S specimens…
Integral imaging with Fourier-plane recording
2017
Integral Imaging is well known for its capability of recording both the spatial and the angular information of threedimensional (3D) scenes. Based on such an idea, the plenoptic concept has been developed in the past two decades, and therefore a new camera has been designed with the capacity of capturing the spatial-angular information with a single sensor and after a single shot. However, the classical plenoptic design presents two drawbacks, one is the oblique recording made by external microlenses. Other is loss of information due to diffraction effects. In this contribution report a change in the paradigm and propose the combination of telecentric architecture and Fourier-plane recordin…
Electrical Modeling of Monolithically Integrated GMR Based Current Sensors
2018
We report on the electrical compact model, using Verilog-A, of a monolithically integrated giant magnetoresistance (GMR) based electrical current sensors. For this purpose, a specifically designed ASIC (AMS $0.35\mu \mathrm{m}$ technology) has been considered, onto which such sensors have been patterned and fabricated, following a two-steps procedure. This work is focused on the DC regime model extraction, giving evidences of its good performance and stating the bases for subsequent model improvements.
Mechanisms of Electron-Induced Single-Event Upsets in Medical and Experimental Linacs
2018
In this paper, we perform an in-depth analysis of the single-event effects observed during testing at medical electron linacs and an experimental high-energy electron linac. For electron irradiations, the medical linacs are most commonly used due to their availability and flexibility. Whereas previous efforts were made to characterize the cross sections at higher energies, where the nuclear interaction cross section is higher, the focus of this paper is on the complete overview of relevant electron energies. Irradiations at an electron linac were made with two different devices, with a large difference in feature size. The irradiations at an experimental linac were performed with varying en…
Influence of Sr addition on structural, dielectric and Raman properties of Na0.5Bi0.5TiO3ceramics
2016
ABSTRACTLead free (Na0.5Bi0.5)1-xSrxTiO3 (x = 0, 0.01 and 0.02) ceramics were produced by a conventional solid-state sintering method. X-ray diffraction analysis shows that the obtained samples possess the perovskite structure with rhombohedral symmetry. The microstructure study shows a dense structure, in agreement with the relative density (above 97%). Dielectric analysis revealed the diffuse character of the electric permittivity anomalies and their shift to a lower temperature range after Sr doping of NBT. The Raman spectra are similar for all samples in agreement with the X-ray diffraction data. The possible origin of the observed effects was discussed.
2021
Atomic layer deposition (ALD) technology has unlocked new ways of manipulating the growth of inorganic materials. The fine control at the atomic level allowed by ALD technology creates the perfect conditions for the inclusion of new cationic or anionic elements of the already-known materials. Consequently, novel material characteristics may arise with new functions for applications. This is especially relevant for inorganic luminescent materials where slight changes in the vicinity of the luminescent centers may originate new emission properties. Here, we studied the luminescent properties of CaS:Eu by introducing europium with oxygen ions by ALD, resulting in a novel CaS:EuO thin film. We …
Compact setup for spin-, time-, and angle-resolved photoemission spectroscopy.
2020
Review of scientific instruments 91(6), 063001 (2020). doi:10.1063/5.0004861
Dynamics of quantum discord of two coupled spin-1/2’s subjected to time-dependent magnetic fields
2019
Abstract We describe the dynamics of quantum discord of two interacting spin-1/2’s subjected to controllable time-dependent magnetic fields. The exact time evolution of discord is given for various input mixed states consisting of classical mixtures of two Bell states. The quantum discord manifests a complex oscillatory behaviour in time and is compared with that of quantum entanglement, measured by concurrence. The interplay of the action of the time-dependent magnetic fields and the spin-coupling mechanism in the occurrence and evolution of quantum correlations is examined in detail.
Radiation hardness studies of CdTe and for the SIXS particle detector on-board the BepiColombo spacecraft
2009
Abstract We report of the radiation hardness measurements that were performed in the developing work of a particle detector on-board ESA's forthcoming BepiColombo spacecraft. Two different high- Z semiconductor compounds, cadmium telluride (CdTe) and mercuric iodide (HgI 2 ), were irradiated with 22 MeV protons in four steps to attain the estimated total dose of 10 12 p / cm 2 for the mission time. The performance of the detectors was studied before and after every irradiation with radioactive 55 Fe source Mn K α 5.9 keV emission line. We studied the impact of the proton beam exposure on detector leakage current, energy resolution and charge collection efficiency (CCE). Also the reconstruct…
Real space observation of two-dimensional Bloch wave interferences in a negative index photonic crystal cavity
2008
We report here the direct observation of two-dimensional (2D) Bloch wave interferences in a negative index photonic crystal by using optical near-field microscopy techniques. The photonic crystal is formed by a defectless honeycomb lattice of air holes etched in III-V semiconductor slab. A scanning near-field optical microscope is used to visualize spatially, as well as spectrally, the light distribution inside the photonic crystal. The recorded near-field spectra and maps presented here unambiguously demonstrate the Bloch wave interferences within the photonic crystal. Then, the spectral and spatial evolution of these interferences allows us to recover experimentally the 2D band diagram of…