Search results for "action"

showing 10 items of 25852 documents

Static and dynamic structure of $ZnWO_4$ nanoparticles

2011

Abstract Static and dynamic structure of ZnWO 4 nanoparticles, synthesized by co-precipitation technique, has been studied by temperature dependent x-ray absorption spectroscopy at the Zn K-edge and W L 3 -edge. Complementary experimental techniques, such as x-ray powder diffraction, Raman and photoluminescence spectroscopies, have been used to understand the variation of vibrational, optical, and structural properties of nanoparticles, compared to microcrystalline ZnWO 4 . Our results indicate that the structure of nanoparticles experiences strong relaxation leading to the significant distortions of the WO 6 and ZnO 6 octahedra, being responsible for the changes in optical and vibrational …

010302 applied physicsMaterials sciencePhotoluminescenceAbsorption spectroscopyExtended X-ray absorption fine structureAnalytical chemistryNanoparticle02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialssymbols.namesakeMicrocrystalline0103 physical sciencesX-ray crystallographyMaterials ChemistryCeramics and Compositessymbolsddc:6600210 nano-technologyRaman spectroscopyPowder diffraction
researchProduct

Deviation of H− beam extraction simulation model

2018

Negative hydrogen ion source extraction system development is dependent on accurate and fast simulation methods for modelling the behaviour of ion and electron beams. Traditionally this type of work has been done using ray-tracing extraction codes, such as IBSimu. The plasma extraction model in IBSimu has been observed to under-estimate the charge density near the plasma sheath, leading to incorrect prediction of the current at which the system produces the optimum emittance. It is suspected that this deviation results from the approximations made by the model, neglecting the magnetic field and collisional effects near the sheath region. Results and comparisons to simulations are presented …

010302 applied physicsMaterials scienceta114business.industryExtraction (chemistry)tietokonegrafiikkaplasmafysiikka01 natural sciencesOpticsion sourcesPhysics::Plasma Physicscomputer graphics0103 physical sciencessimulointi010306 general physicsbusinessBeam (structure)plasma sheaths
researchProduct

Quasi-static behaviour and damage assessment of flax/epoxy composites

2015

Experimental investigations were conducted on flax and E-glass fibres reinforced epoxy matrix composites subjected to quasi-static loadings. Flax/epoxy samples having [0]12, [90]12, [0/90]3S and [±45]3S stacking sequences, with a fibre volume fraction of 43% have been tested under tension, compression and in-plane shear loadings. Overall, the compression strength of glass/epoxy was 76% greater than for the flax/epoxy composite. The damage evolution of flax/epoxy of [0/90]3S and [±45]3S samples has been evaluated in terms of transverse crack densities with respect to the load increment. The crack density exhibited a classical “S” shaped pattern for [0/90]3S and linearly for [±45]3S specimens…

010302 applied physicsMatériaux [Sciences de l'ingénieur]Materials sciencePolymer-matrix compositesComposite numberMechanical properties02 engineering and technologyEpoxy matrixEpoxy021001 nanoscience & nanotechnologyE-glass fibres01 natural sciences[SPI]Engineering Sciences [physics]Compressive strengthDamage mechanicsDamage mechanicsvisual_art0103 physical sciencesVolume fractionvisual_art.visual_art_mediumFlax fibresMécanique: Mécanique des matériaux [Sciences de l'ingénieur]Composite material0210 nano-technologyQuasistatic process
researchProduct

Integral imaging with Fourier-plane recording

2017

Integral Imaging is well known for its capability of recording both the spatial and the angular information of threedimensional (3D) scenes. Based on such an idea, the plenoptic concept has been developed in the past two decades, and therefore a new camera has been designed with the capacity of capturing the spatial-angular information with a single sensor and after a single shot. However, the classical plenoptic design presents two drawbacks, one is the oblique recording made by external microlenses. Other is loss of information due to diffraction effects. In this contribution report a change in the paradigm and propose the combination of telecentric architecture and Fourier-plane recordin…

010302 applied physicsMicrolensDiffractionIntegral imagingPlane (geometry)Computer sciencebusiness.industryComputationComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONOblique case01 natural sciencesÒptica Aparells i instruments010309 opticssymbols.namesakeFourier transformOptics0103 physical sciencessymbolsComputer visionDepth of fieldArtificial intelligenceFourier Anàlisi debusinessThree-Dimensional Imaging, Visualization, and Display 2017
researchProduct

Electrical Modeling of Monolithically Integrated GMR Based Current Sensors

2018

We report on the electrical compact model, using Verilog-A, of a monolithically integrated giant magnetoresistance (GMR) based electrical current sensors. For this purpose, a specifically designed ASIC (AMS $0.35\mu \mathrm{m}$ technology) has been considered, onto which such sensors have been patterned and fabricated, following a two-steps procedure. This work is focused on the DC regime model extraction, giving evidences of its good performance and stating the bases for subsequent model improvements.

010302 applied physicsModel extractionMaterials sciencebusiness.industry010401 analytical chemistryElectrical engineeringGiant magnetoresistance01 natural sciences0104 chemical sciencesElectrical currentApplication-specific integrated circuit0103 physical sciencesHardware design languagesCurrent (fluid)business2018 Spanish Conference on Electron Devices (CDE)
researchProduct

Mechanisms of Electron-Induced Single-Event Upsets in Medical and Experimental Linacs

2018

In this paper, we perform an in-depth analysis of the single-event effects observed during testing at medical electron linacs and an experimental high-energy electron linac. For electron irradiations, the medical linacs are most commonly used due to their availability and flexibility. Whereas previous efforts were made to characterize the cross sections at higher energies, where the nuclear interaction cross section is higher, the focus of this paper is on the complete overview of relevant electron energies. Irradiations at an electron linac were made with two different devices, with a large difference in feature size. The irradiations at an experimental linac were performed with varying en…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceta114010308 nuclear & particles physicselectronsElectron linacElectronhiukkaskiihdyttimetelektronitparticle accelerators01 natural sciencesLinear particle acceleratorNuclear physicsNuclear interactionradiation physicsCross section (physics)säteilyfysiikkaNuclear Energy and Engineering0103 physical sciencesElectrical and Electronic EngineeringEvent (particle physics)IEEE Transactions on Nuclear Science
researchProduct

Influence of Sr addition on structural, dielectric and Raman properties of Na0.5Bi0.5TiO3ceramics

2016

ABSTRACTLead free (Na0.5Bi0.5)1-xSrxTiO3 (x = 0, 0.01 and 0.02) ceramics were produced by a conventional solid-state sintering method. X-ray diffraction analysis shows that the obtained samples possess the perovskite structure with rhombohedral symmetry. The microstructure study shows a dense structure, in agreement with the relative density (above 97%). Dielectric analysis revealed the diffuse character of the electric permittivity anomalies and their shift to a lower temperature range after Sr doping of NBT. The Raman spectra are similar for all samples in agreement with the X-ray diffraction data. The possible origin of the observed effects was discussed.

010302 applied physicsPermittivityDiffractionMaterials scienceDopingAnalytical chemistrySintering02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesElectronic Optical and Magnetic Materialssymbols.namesakeControl and Systems Engineering0103 physical sciencesMaterials ChemistryCeramics and CompositessymbolsRelative densityElectrical and Electronic Engineering0210 nano-technologyRaman spectroscopyIntegrated Ferroelectrics
researchProduct

2021

Atomic layer deposition (ALD) technology has unlocked new ways of manipulating the growth of inorganic materials. The fine control at the atomic level allowed by ALD technology creates the perfect conditions for the inclusion of new cationic or anionic elements of the already-known materials. Consequently, novel material characteristics may arise with new functions for applications. This is especially relevant for inorganic luminescent materials where slight changes in the vicinity of the luminescent centers may originate new emission properties. Here, we studied the luminescent properties of CaS:Eu by introducing europium with oxygen ions by ALD, resulting in a novel CaS:EuO thin film. We …

010302 applied physicsPhotoluminescenceMaterials sciencebusiness.industryDopingchemistry.chemical_elementPhosphor02 engineering and technology021001 nanoscience & nanotechnology7. Clean energy01 natural sciencesIonAtomic layer depositionchemistry13. Climate action0103 physical sciencesOptoelectronicsGeneral Materials ScienceThin film0210 nano-technologybusinessLuminescenceEuropiumMaterials
researchProduct

Compact setup for spin-, time-, and angle-resolved photoemission spectroscopy.

2020

Review of scientific instruments 91(6), 063001 (2020). doi:10.1063/5.0004861

010302 applied physicsPhotonMaterials sciencePhotoemission spectroscopyTi:sapphire laserPhysics::OpticsAngle-resolved photoemission spectroscopyElectronLaser01 natural sciences010305 fluids & plasmaslaw.invention620Electron diffractionlaw0103 physical sciencesHigh harmonic generationCondensed Matter::Strongly Correlated ElectronsAtomic physicsddc:620InstrumentationThe Review of scientific instruments
researchProduct

Dynamics of quantum discord of two coupled spin-1/2’s subjected to time-dependent magnetic fields

2019

Abstract We describe the dynamics of quantum discord of two interacting spin-1/2’s subjected to controllable time-dependent magnetic fields. The exact time evolution of discord is given for various input mixed states consisting of classical mixtures of two Bell states. The quantum discord manifests a complex oscillatory behaviour in time and is compared with that of quantum entanglement, measured by concurrence. The interplay of the action of the time-dependent magnetic fields and the spin-coupling mechanism in the occurrence and evolution of quantum correlations is examined in detail.

010302 applied physicsPhysicsBell stateQuantum discordTime evolutionGeneral Physics and Astronomy02 engineering and technologyQuantum entanglement021001 nanoscience & nanotechnology01 natural sciencesAction (physics)lcsh:QC1-999Magnetic fieldQuantum Discord Concurrence Interacting QubitsQuantum mechanics0103 physical sciences0210 nano-technologyQuantumlcsh:PhysicsSpin-½Results in Physics
researchProduct