Search results for "activation-tagging"

showing 2 items of 2 documents

An Arabidopsis Mutant Over-Expressing Subtilase SBT4.13 Uncovers the Role of Oxidative Stress in the Inhibition of Growth by Intracellular Acidificat…

2020

Intracellular acid stress inhibits plant growth by unknown mechanisms and it occurs in acidic soils and as consequence of other stresses. In order to identify mechanisms of acid toxicity, we screened activation-tagging lines of Arabidopsis thaliana for tolerance to intracellular acidification induced by organic acids. A dominant mutant, sbt4.13-1D, was isolated twice and shown to over-express subtilase SBT4.13, a protease secreted into endoplasmic reticulum. Activity measurements and immuno-detection indicate that the mutant contains less plasma membrane H+-ATPase (PMA) than wild type, explaining the small size, electrical depolarization and decreased cytosolic pH of the mutant but not orga…

0106 biological sciences0301 basic medicineMutantmedicine.disease_cause01 natural sciencesCatalysisInorganic Chemistrylcsh:ChemistryH<sup>+</sup>-ATPase03 medical and health sciencesorganic acidsmedicinePhysical and Theoretical ChemistryMolecular Biologylcsh:QH301-705.5Spectroscopychemistry.chemical_classificationReactive oxygen speciesNADPH oxidasebiologyNADPH oxidaseEndoplasmic reticulumOrganic ChemistryWild typeROSGeneral MedicineComputer Science ApplicationsCell biology030104 developmental biologychemistrylcsh:Biology (General)lcsh:QD1-999biology.proteinactivation-taggingIntracellularOxidative stress010606 plant biology & botanyOrganic acidInternational Journal of Molecular Sciences
researchProduct

An

2020

Intracellular acid stress inhibits plant growth by unknown mechanisms and it occurs in acidic soils and as consequence of other stresses. In order to identify mechanisms of acid toxicity, we screened activation-tagging lines of Arabidopsis thaliana for tolerance to intracellular acidification induced by organic acids. A dominant mutant, sbt4.13-1D, was isolated twice and shown to over-express subtilase SBT4.13, a protease secreted into endoplasmic reticulum. Activity measurements and immuno-detection indicate that the mutant contains less plasma membrane H+-ATPase (PMA) than wild type, explaining the small size, electrical depolarization and decreased cytosolic pH of the mutant but not orga…

NADPH oxidaseArabidopsis ProteinsArabidopsisNADPH OxidasesGerminationROSArticleOxidative StressProton-Translocating ATPasesMutationorganic acidsactivation-taggingH+-ATPaseSubtilisinsProtonsInternational journal of molecular sciences
researchProduct