Search results for "adiabatic"
showing 10 items of 285 documents
A Simple Model of Radiative Emission in M87
2005
We present a simple physical model of the central source emission in the M87 galaxy. It is well known that the observed X-ray luminosity from this galactic nucleus is much lower than the predicted one, if a standard radiative efficiency is assumed. Up to now the main model invoked to explain such a luminosity is the ADAF (Advection-Dominated-Accretion-Flow) model. Our approach supposes only a simple axis-symmetric adiabatic accretion with a low angular momentum together with the bremsstrahlung emission process in the accreting gas. With no other special hypothesis on the dynamics of the system, this model agrees well enough with the luminosity value measured by Chandra.
Zero‐Energy Rotating Accretion Flows near a Black Hole
1996
We characterize the nature of thin, axisymmetric, inviscid, accretion flows of cold adiabatic gas with zero specific energy in the vicinity of a black hole by the specific angular momentum. Using two-dimensional hydrodynamic simulations in cylindrical geometry, we present various regimes in which the accretion flows behave distinctly differently. When the flow has a small angular momentum $(\lambda\lsim\lambda_b)$, most of the material is accreted into the black hole forming a quasi-spherical flow or a simple disk-like structure around it. When the flow has a large angular momentum (typically, larger than the marginally bound value, $\lambda\gsim\lambda_{mb}$), almost no accretion into the …
Quantum effects in the capture of charged particles by dipolar polarizable symmetric top molecules. I. General axially nonadiabatic channel treatment
2013
The rate coefficients for capture of charged particles by dipolar polarizable symmetric top molecules in the quantum collision regime are calculated within an axially nonadiabatic channel approach. It uses the adiabatic approximation with respect to rotational transitions of the target within first-order charge-dipole interaction and takes into account the gyroscopic effect that decouples the intrinsic angular momentum from the collision axis. The results are valid for a wide range of collision energies (from single-wave capture to the classical limit) and dipole moments (from the Vogt-Wannier and fly-wheel to the adiabatic channel limit).
The Static Stability of the Tropopause Region in Adiabatic Baroclinic Life Cycle Experiments
2011
Abstract The tropopause inversion layer (TIL) is a region of enhanced static stability just above the WMO-defined thermal tropopause. It is a ubiquitous feature in midlatitudes and is well characterized by observations. However, it is still lacking a satisfactory theoretical explanation. This study utilizes adiabatic baroclinic life cycle experiments to investigate dynamical mechanisms that lead to TIL formation. As the baroclinic wave grows, a strong TIL forms above anticyclonic anomalies, while no TIL is found above cyclonic anomalies; this is consistent with previous results. However, during the early growth phase there is no TIL in the global or zonal average: positive and negative anom…
Spheroidal and hyperspheroidal coordinates in the adiabatic representation of scattering states for the Coulomb three-body problem
2009
Recently, an involved approach has been used by Abramov (2008 J. Phys. B: At. Mol. Opt. Phys. 41 175201) to introduce a separable adiabatic basis into the hyperradial adiabatic (HA) approximation. The aim was to combine the separability of the Born–Oppenheimer (BO) adiabatic basis and the better asymptotic properties of the HA approach. Generalizing these results we present here three more different separable bases of the same type by making use of a previously introduced adiabatic Hamiltonian expressed in hyperspheroidal coordinates (Matveenko 1983 Phys. Lett. B 129 11). In addition, we propose a robust procedure which accounts in a stepwise procedure for the unphysical couplings that are …
Canonical Adiabatic Theory
2001
In the present chapter we are concerned with systems, the change of which—with the exception of a single degree of freedom—should proceed slowly. (Compare the pertinent remarks about \(\varepsilon\) as slow parameter in Chap. 7) Accordingly, the Hamiltonian reads: $$\displaystyle{ H = H_{0}{\bigl (J,\varepsilon p_{i},\varepsilon q_{i};\varepsilon t\bigr )} +\varepsilon H_{1}{\bigl (J,\theta,\varepsilon p_{i},\varepsilon q_{i};\varepsilon t\bigr )}\;. }$$ (12.1) Here, \((J,\theta )\) designates the “fast” action-angle variables for the unperturbed, solved problem \(H_{0}(\varepsilon = 0),\) and the (p i , q i ) represent the remaining “slow” canonical variables, which do not necessarily have…
Non-adiabatic pumping of single electrons affected by magnetic fields
2009
Non-adiabatic pumping of discrete charges, realized by a dynamical quantum dot in an AlGaAs/GaAs heterostructure, is studied under influence of a perpendicular magnetic field. Application of an oscillating voltage in the GHz-range to one of two top gates, crossing a narrow wire and confining a quantum dot, leads to quantized pumped current plateaus in the gate characteristics. The regime of pumping one single electron is traced back to the diverse tunneling processes into and out-of the dot. Extending the theory to multiple electrons allows to investigate conveniently the pumping characteristics in an applied magnetic field. In this way, a qualitatively different behavior between pumping ev…
Adiabatic quantum pumping, magnification effects and quantum size effects of spin-torque in magnetic tunnel junctions
2010
We study the adiabatic quantum pumping and quantum size effects of spin-torque in a magnetic tunnel junction within a scattering matrix approach. Quantum size effects are predicted in the presence of a dc bias as a function of the thickness of the normal metal layer inserted between two magnetic layers and of the fixed magnetic layer. In the presence of ac voltages, the results for the spin-torque show a peculiar magnification effect and advantages of spin-torque pumping in actual devices are also discussed.
Non-adiabatic quantized charge pumping with tunable-barrier quantum dots: a review of current progress.
2014
Precise manipulation of individual charge carriers in nanoelectronic circuits underpins practical applications of their most basic quantum property --- the universality and invariance of the elementary charge. A charge pump generates a net current from periodic external modulation of parameters controlling a nanostructure connected to source and drain leads; in the regime of quantized pumping the current varies in steps of $q_e f$ as function of control parameters, where $q_e$ is the electron charge and $f$ is the frequency of modulation. In recent years, robust and accurate quantized charge pumps have been developed based on semiconductor quantum dots with tunable tunnel barriers. These de…
Comparative study of many-body perturbation theory and time-dependent density functional theory in the out-of-equilibrium Anderson model
2011
We study time-dependent electron transport through an Anderson model. The electronic interactions on the impurity site are included via the self-energy approximations at Hartree-Fock (HF), second Born (2B), GW, and T-matrix levels as well as within a time-dependent density functional (TDDFT) scheme based on the adiabatic Bethe-ansatz local density approximation (ABALDA) for the exchange-correlation potential. The Anderson model is driven out of equilibrium by applying a bias to the leads, and its nonequilibrium dynamics is determined by real-time propagation. The time-dependent currents and densities are compared to benchmark results obtained with the time-dependent density matrix renormali…