Search results for "adiabatic"
showing 10 items of 285 documents
Quantum state engineering in a cavity by Stark chirped rapid adiabatic passage
2006
We propose a robust scheme to generate single-photon Fock states and atom-photon and atom-atom entanglement in atom-cavity systems. We also present a scheme for quantum networking between two cavity nodes using an atomic channel. The mechanism is based on Stark-chirped rapid adiabatic passage (SCRAP) and half-SCRAP processes in a microwave cavity. The engineering of these states depends on the design of the adiabatic dynamics through the static and dynamic Stark shifts.
Preparing single ultra-cold antihydrogen atoms for free-fall in GBAR
2014
We discuss an experimental approach allowing to prepare antihydrogen atoms for the GBAR experiment. We study the feasibility of all necessary experimental steps: The capture of incoming $\bar{\rm H}^{+}$ ions at keV energies in a deep linear RF trap, sympathetic cooling by laser cooled Be+ ions, transfer to a miniaturized trap and Raman sideband cooling of an ion pair to the motional ground state, and further reducing the momentum of the wavepacket by adiabatic opening of the trap. For each step, we point out the experimental challenges and discuss the efficiency and characteristic times, showing that capture and cooling are possible within a few seconds. We discuss an experimental approach…
Dzyaloshinskii-Moriya Interaction and Hall Effects in the Skyrmion Phase ofMn1−xFexGe
2015
We carry out density functional theory calculations which demonstrate that the electron dynamics in the Skyrmion phase of Fe-rich Mn_{1-x}Fe_{x}Ge alloys is governed by Berry phase physics. We observe that the magnitude of the Dzyaloshinskii-Moriya interaction directly related to the mixed space-momentum Berry phases, changes sign and magnitude with concentration x in direct correlation with the data of Shibata et al. [Nat. Nanotechnol. 8, 723 (2013)]. The computed anomalous and topological Hall effects in FeGe are also in good agreement with available experiments. We further develop a simple tight-binding model able to explain these findings. Finally, we show that the adiabatic Berry phase…
Zeno-like phenomena in STIRAP processes
2011
The presence of a continuous measurement quantum Zeno effect in a stimulated Raman adiabatic passage is studied, exploring in detail a sort of self-competition of the damping, which drives the system toward a loss of population and, at the same time, realizes the conditions for optimizing the adiabatic passage.
Running couplings from adiabatic regularization
2019
We extend the adiabatic regularization method by introducing an arbitrary mass scale $\mu$ in the construction of the subtraction terms. This allows us to obtain, in a very robust way, the running of the coupling constants by demanding $\mu$-invariance of the effective semiclassical (Maxwell-Einstein) equations. In particular, we get the running of the electric charge of perturbative quantum electrodynamics. Furthermore, the method brings about a renormalization of the cosmological constant and the Newtonian gravitational constant. The running obtained for these dimensionful coupling constants has new relevant (non-logarithmic) contributions, not predicted by dimensional regularization.
Improved determination of the β−ν¯e angular correlation coefficient a in free neutron decay with the aSPECT spectrometer
2020
We report on a precise measurement of the electron-antineutrino angular correlation ($a$ coefficient) in free neutron beta-decay from the $a$SPECT experiment. The $a$ coefficient is inferred from the recoil energy spectrum of the protons which are detected in 4$\pi$ by the $a$SPECT spectrometer using magnetic adiabatic collimation with an electrostatic filter. Data are presented from a 100 days run at the Institut Laue Langevin in 2013. The sources of systematic errors are considered and included in the final result. We obtain $a = -0.10430(84)$ which is the most precise measurement of the neutron $a$ coefficient to date. From this, the ratio of axial-vector to vector coupling constants is …
Non-Adiabatic Aspects of Time-Dependent Hamiltonian Systems
1994
Extreme adiabatic behavior furnishes great simplification in the treatment of linear time-dependent Hamiltonian systems. But the actual time variation of the parameters is only finitely, rather than infinitely, slow. Then one is forced to consider corrections to the adiabatic limit.
Transitionless quantum driving in open quantum systems
2014
Abstract We extend the concept of superadiabatic dynamics, or transitionless quantum driving, to quantum open systems whose evolution is governed by a master equation in the Lindblad form. We provide the general framework needed to determine the control strategy required to achieve superadiabaticity. We apply our formalism to two examples consisting of a two-level system coupled to environments with time-dependent bath operators.
Prototype of an angular-selective photoelectron calibration source for the KATRIN experiment
2010
The method of direct neutrino mass determination based on the kinematics of tritium beta decay, which is adopted by the KATRIN experiment, makes use of a large, high-resolution electrostatic spectrometer with magnetic adiabatic collimation. In order to target a sensitivity on the neutrino mass of 0.2 eV/c^2, a detailed understanding of the electromagnetic properties of the electron spectrometer is essential, requiring comprehensive calibration measurements with dedicated electron sources. In this paper we report on a prototype of a photoelectron source providing a narrow energy spread and angular selectivity. Both are key properties for the characterisation of the spectrometer. The angular …
Optimization of population transfer by adiabatic passage
2002
We examine the adiabatic limit of population transfer in two-level models driven by a chirped laser field. We show that the nonadiabatic correction is minimized when the adiabatic eigenenergies associated to the dynamics are parallel. In the diagram of the difference of the eigenenergy surfaces as a function of the parameters, this corresponds to an adiabatic passage along a level line. The analytical arguments are based on the Dykhne-Davis-Pechukas treatment. We illustrate this behavior with various examples.