Search results for "adiabatic"

showing 10 items of 285 documents

Thermomechanical modeling of slab eduction

2012

[1] Plate eduction is a geodynamic process characterized by normal-sense coherent motion of previously subducted continental plate. This mechanism may occur after slab detachment has separated the negatively buoyant oceanic plate from the positively buoyant orogenic root. Eduction may therefore be partly responsible for exhumation of high pressure rocks and late orogenic extension. We used two-dimensional thermomechanical modeling to investigate the main features of the plate eduction model. The results show that eduction can lead to the quasi adiabatic decompression of the subducted crust (≈2 GPa) in a timespan of 5 My, large localized extensional strain in the former subduction channel, f…

Atmospheric Science010504 meteorology & atmospheric sciencesContinental collisionSoil ScienceAquatic Science010502 geochemistry & geophysicsOceanography01 natural sciencesMantle (geology)FlatteningGeochemistry and PetrologyOceanic crustEarth and Planetary Sciences (miscellaneous)Adiabatic process0105 earth and related environmental sciencesEarth-Surface ProcessesWater Science and TechnologyEcologySubductionPaleontologyForestryCrustGeophysicsGeophysicsSpace and Planetary ScienceSlabGeologyJournal of Geophysical Research: Solid Earth
researchProduct

Mechanisms of Banner Cloud Formation

2013

Abstract Banner clouds are clouds in the lee of steep mountains or sharp ridges. Their formation has previously been hypothesized as due to three different mechanisms: (i) vertical uplift in a lee vortex (which has a horizontal axis), (ii) adiabatic expansion along quasi-horizontal trajectories (the so-called Bernoulli effect), and (iii) a mixing cloud (i.e., condensation through mixing of two unsaturated air masses). In the present work, these hypotheses are tested and quantitatively evaluated against each other by means of large-eddy simulation. The model setup is chosen such as to represent idealized but prototypical conditions for banner cloud formation. In this setup the lee-vortex mec…

Atmospheric ScienceWork (thermodynamics)Meteorologymedia_common.quotation_subjectCondensationGeometryAsymmetryPlumeVortexBernoulli's principleAdiabatic processMixing (physics)Geologymedia_commonJournal of the Atmospheric Sciences
researchProduct

Sawtooth-wave adiabatic-passage slowing of dysprosium

2018

We report on sawtooth wave adiabatic passage (SWAP) slowing of bosonic and fermionic dysprosium isotopes by using a 136 kHz wide transition at 626 nm. A beam of precooled atoms is further decelerated in one dimension by the SWAP force and the amount of atoms at near zero velocity is measured. We demonstrate that the SWAP slowing can be twice as fast as in a conventional optical molasses operated on the same transition. In addition, we investigate the parameter range for which the SWAP force is efficiently usable in our set-up, and relate the results to the adiabaticity condition. Furthermore, we add losses to the hyperfine ground-state population of fermionic dysprosium during deceleration …

Atomic Physics (physics.atom-ph)PopulationFOS: Physical scienceschemistry.chemical_elementSawtooth wave01 natural sciencesPhysics - Atomic Physics010305 fluids & plasmas0103 physical sciencesPhysics::Atomic Physics010306 general physicsAdiabatic processeducationHyperfine structurePhysicsQuantum PhysicsRange (particle radiation)education.field_of_studychemistryQuantum Gases (cond-mat.quant-gas)Optical molassesDysprosiumAtomic physicsQuantum Physics (quant-ph)Condensed Matter - Quantum GasesBeam (structure)Physical Review A
researchProduct

The electronic spectrum of pyrrole

1999

The electronic spectrum of pyrrole has been investigated by performing calculations using a hierarchy of coupled-cluster models consisting of CCS, CC2, CCSD, and CC3. Basis-set effects have been investigated by carrying out calculations using correlation-consistent basis sets augmented with functions especially designed for the description of Rydberg states. Oscillator strengths, excited state dipole moments, and second moments of the electronic charge distributions have been used to characterize the electronic transitions and final states. Structures and vibrational frequencies have been calculated for a few selected states, and the importance of distinguishing between vertical and adiabat…

Basis (linear algebra)ChemistrySpectrum (functional analysis)General Physics and AstronomyElementary chargeDipolesymbols.namesakeAtomic electron transitionExcited stateRydberg formulasymbolsPhysical and Theoretical ChemistryAtomic physicsAdiabatic processThe Journal of Chemical Physics
researchProduct

Non-thermal radiation from a pulsar wind interacting with an inhomogeneous stellar wind

2017

Binaries hosting a massive star and a non-accreting pulsar are powerful non-thermal emitters due to the interaction of the pulsar and the stellar wind. The winds of massive stars are thought to be inhomogeneous, which could have an impact on the non-thermal emission. We study numerically the impact of the presence of inhomogeneities or clumps in the stellar wind on the high-energy non-thermal radiation of high-mass binaries hosting a non-accreting pulsar. We compute the trajectories and physical properties of the streamlines in the shocked pulsar wind without clumps, with a small clump, and with a large one. This information is used to compute the synchrotron and inverse Compton emission fr…

Be starAstrophysics::High Energy Astrophysical PhenomenaPopulationEstels binarisFOS: Physical sciencesSynchrotron radiationAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesRaigs gammaDouble starsPulsar0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsAdiabatic processeducation010303 astronomy & astrophysicsPulsarsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studyHidrodinàmica010308 nuclear & particles physicsGamma raysAstronomy and AstrophysicsPúlsarsParticle accelerationStarsAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceThermal radiationHydrodynamicsAstrophysics - High Energy Astrophysical PhenomenaAstronomy & Astrophysics
researchProduct

Correlation Dynamics During a Slow Interaction Quench in a One-Dimensional Bose Gas

2014

We investigate the response of a one-dimensional Bose gas to a slow increase of its interaction strength. We focus on the rich dynamics of equal-time single-particle correlations treating the Lieb-Liniger model within a bosonization approach and the Bose-Hubbard model using the time-dependent density-matrix renormalization group method. For short distances, correlations follow a power-law with distance with an exponent given by the adiabatic approximation. In contrast, for long distances, correlations decay algebraically with an exponent understood within the sudden quench approximation. This long distance regime is separated from an intermediate distance one by a generalized Lieb-Robinson …

BosonizationPhysicsCondensed Matter::Quantum GasesLieb-Robinson boundBose gas[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]General Physics and AstronomyFOS: Physical sciencesTomonaga-Luttinger LiquidRenormalization groupPower lawExponential functionAdiabatic theoremequal-time Green's functionsQuantum Gases (cond-mat.quant-gas)Light coneQuantum mechanicsinteraction quenchExponentCondensed Matter - Quantum GasesPACS: 67.85.−d 03.75.Kk 03.75.Lm 67.25.D−
researchProduct

The adiabatic strictly-correlated-electrons functional : kernel and exact properties

2016

We investigate a number of formal properties of the adiabatic strictly-correlated electrons (SCE) functional, relevant for time-dependent potentials and for kernels in linear response time-dependent density functional theory. Among the former, we focus on the compliance to constraints of exact many-body theories, such as the generalised translational invariance and the zero-force theorem. Within the latter, we derive an analytical expression for the adiabatic SCE Hartree exchange-correlation kernel in one dimensional systems, and we compute it numerically for a variety of model densities. We analyse the non-local features of this kernel, particularly the ones that are relevant in tackling p…

Chemical Physics (physics.chem-ph)PhysicsStrongly Correlated Electrons (cond-mat.str-el)010304 chemical physicsta114FOS: Physical sciencesGeneral Physics and Astronomyformal probertiesElectronHartreeExpression (computer science)01 natural sciencesadiabatic strictly-correlated electronsCondensed Matter - Strongly Correlated ElectronskernelKernel (statistics)Physics - Chemical Physics0103 physical sciencesDensity functional theoryStatistical physicsPhysical and Theoretical ChemistryVariety (universal algebra)010306 general physicsAdiabatic processFocus (optics)
researchProduct

The first excited singlet state of s‐tetrazine: A theoretical analysis of some outstanding questions

1996

The equation‐of‐motion coupled cluster method for excited electronic states (EOMEE‐CC) is applied to study the structure and selected properties of the first excited singlet state of s‐tetrazine. Adiabatic S1←S0 excitation energies obtained with large basis sets containing up to 270 functions are uniformly somewhat above the experimental 0–0 value of 2.238 eV, but nevertheless are the most accurate calculations reported to date for this quantity. The equilibrium geometry of S1 predicted in this study is in excellent agreement with another high‐level calculation, and moreover is quantitatively consistent with both the intensity of vibrational progressions observed in absorption and measured …

ChemistryAnharmonicityGeneral Physics and AstronomyElectronic structuresymbols.namesakeTetrazinechemistry.chemical_compoundCoupled clusterFranck–Condon principleExcited statesymbolsPhysical and Theoretical ChemistryAtomic physicsAdiabatic processExcitationThe Journal of Chemical Physics
researchProduct

Full configuration interaction calculation of BeH adiabatic states.

2008

An all-electron full configuration interaction (FCI) calculation of the adiabatic potential energy curves of some of the lower states of BeH molecule is presented. A moderately large ANO basis set of atomic natural orbitals (ANO) augmented with Rydberg functions has been used in order to describe the valence and Rydberg states and their interactions. The Rydberg set of ANOs has been placed on the Be at all bond distances. So, the basis set can be described as 4s3p2d1f3s2p1d(BeH)+4s4p2d(Be). The dipole moments of several states and transition dipole strengths from the ground state are also reported as a function of the R(Be-H) distance. The position and the number of states involved in sever…

ChemistryConfiguration interactionsGeneral Physics and AstronomyBond lengthsBeryllium compounds ; Bond lengths ; Configuration interactions ; Ground states ; Molecular moments ; Potential energy surfaces ; Rydberg states ; Vibrational statesRydberg statesPotential energyFull configuration interactionGround statesUNESCO::FÍSICA::Química físicaDipolesymbols.namesakeAtomic orbitalBeryllium compoundsPotential energy surfacesRydberg formulasymbolsMolecular momentsVibrational statesPhysical and Theoretical ChemistryAtomic physicsGround stateAdiabatic process:FÍSICA::Química física [UNESCO]Basis setThe Journal of chemical physics
researchProduct

Direct method for calculating temperature-dependent transport properties

2015

We show how temperature-induced disorder can be combined in a direct way with first-principles scattering theory to study diffusive transport in real materials. Excellent (good) agreement with experiment is found for the resistivity of Cu, Pd, Pt (and Fe) when lattice (and spin) disorder are calculated from first principles. For Fe, the agreement with experiment is limited by how well the magnetization (of itinerant ferromagnets) can be calculated as a function of temperature. By introducing a simple Debye-like model of spin disorder parameterized to reproduce the experimental magnetization, the temperature dependence of the average resistivity, the anisotropic magnetoresistance and the spi…

Condensed Matter - Materials ScienceMaterials scienceSpin polarizationMagnetoresistanceCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsDirect methodMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsAdiabatic theoremMagnetizationFerromagnetismElectrical resistivity and conductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Scattering theory
researchProduct