Search results for "alignment"
showing 10 items of 627 documents
Statistical Validation of the Identification of Tuna Species: Bootstrap Analysis of Mitochondrial DNA Sequences
2002
Sequencing of the mitochondrial cytochrome b gene has been used to differentiate three tuna species: Thunnus albacares (yellowfin tuna), Thunnus obesus (bigeye tuna), and Katsuwonus pelamis (skipjack). A PCR amplified 528 bp fragment from 30 frozen samples and a 171 bp fragment from 26 canned samples of the three species were analyzed to determine the intraspecific variation and the positions with diagnostic value. Polymorphic sites between the species that did not present intraspecific variation were given a diagnostic value. The genetic distance between the sequences was calculated, and a phylogenetic tree was constructed, showing that the sequences belonging to the same species clustered…
Molecular phylogeny of the families Campulidae and Nasitrematidae (Trematoda) based on mtDNA sequence comparison.
1998
Abstract Historically, the systematic arrangement of the genera within the family Campulidae, and its relationship with its allied family Nasitrematidae have been rather confused, particularly because only adult morphology has been available to classical taxonomic analysis. In this paper we provide a partial phylogeny of the genera of these families based on mtDNA from five campulid species: Campula oblonga, Zalophotrema atlanticum, Hadwenius tursionis, Oschmarinella rochebruni and ; and one nasitrematid, Nasitremaglobicephalae . Fasciola hepatica and Dicrocoelium dendriticum were used as outgroups. Maximum parsimony and neighbour-joining methods were applied. Both methods produced similar …
Maintenance of a Protein Structure in the Dynamic Evolution of TIMPs over 600 Million Years
2016
Deciphering the events leading to protein evolution represents a challenge, especially for protein families showing complex evolutionary history. Among them, TIMPs represent an ancient eukaryotic protein family widely distributed in the animal kingdom. They are known to control the turnover of the extracellular matrix and are considered to arise early during metazoan evolution, arguably tuning essential features of tissue and epithelial organization. To probe the structure and molecular evolution of TIMPs within metazoans, we report the mining and structural characterization of a large data set of TIMPs over approximately 600 Myr. The TIMPs repertoire was explored starting from the Cnidaria…
Molecular dissection of human Argonaute proteins by DNA shuffling.
2013
A paramount task in RNA interference research is to decipher the complex biology of cellular effectors, exemplified in humans by four pleiotropic Argonaute proteins (Ago1-Ago4). Here, we exploited DNA family shuffling, a molecular evolution technology, to generate chimeric Ago protein libraries for dissection of intricate phenotypes independently of prior structural knowledge. Through shuffling of human Ago2 and Ago3, we discovered two N-terminal motifs that govern RNA cleavage in concert with the PIWI domain. Structural modeling predicts an impact on protein rigidity and/or RNA-PIWI alignment, suggesting new mechanistic explanations for Ago3's slicing deficiency. Characterization of hybrid…
Solution Structure of the R3H Domain from Human Sμbp-2
2003
The R3H domain is a conserved sequence motif, identified in over 100 proteins, that is thought to be involved in polynucleotide-binding, including DNA, RNA and single-stranded DNA. In this work the 3D structure of the R3H domain from human Smubp-2 was determined by NMR spectroscopy. It is the first 3D structure determination of an R3H domain. The fold presents a small motif, consisting of a three-stranded antiparallel beta-sheet and two alpha-helices, which is related to the structures of the YhhP protein and the C-terminal domain of the translational initiation factor IF3. The similarities are non-trivial, as the amino acid identities are below 10%. Three conserved basic residues cluster o…
Insights into the catalytic mechanism of human sEH phosphatase by site-directed mutagenesis and LC-MS/MS analysis
2008
We have recently reported that human soluble epoxide hydrolase (sEH) is a bifunctional enzyme with a novel phosphatase enzymatic activity. Based on a structural relationship with other members of the haloacid dehalogenase superfamily, the sEH N-terminal phosphatase domain revealed four conserved sequence motifs, including the proposed catalytic nucleophile D9, and several other residues potentially implicated in substrate turnover and/or Mg(2+) binding. To enlighten the catalytic mechanism of dephosphorylation, we constructed sEH phosphatase active-site mutants by site-directed mutagenesis. A total of 18 mutants were constructed and recombinantly expressed in Escherichia coli as soluble pro…
A new evolutionary paradigm for the Parkinson disease gene DJ-1.
2006
The DJ-1 gene is extensively studied because of its involvement in familial Parkinson disease. DJ-1 belongs to a complex superfamily of genes that includes both prokaryotic and eukaryotic representatives. We determine that many prokaryotic groups, such as proteobacteria, cyanobacteria, spirochaetes, firmicutes, or fusobacteria, have genes, often incorrectly called "Thij," that are very close relatives of DJ-1, to the point that they cannot be clearly separated from the eukaryotic DJ-1 genes by phylogenetic analyses of their sequences. In addition, and contrary to a previous study that suggested that DJ-1 genes were animal specific, we show that DJ-1 genes are found in at least 5 of the 6 ma…
Crystal Structure of Cytoglobin: The Fourth Globin Type Discovered in Man Displays Heme Hexa-coordination
2004
Cytoglobin is a recently discovered hemeprotein belonging to the globin superfamily together with hemoglobin, myoglobin and neuroglobin. Although distributed in almost all human tissues, cytoglobin has not been ascribed a specific function. Human cytoglobin is composed of 190 amino acid residues. Sequence alignments show that a protein core region (about 150 residues) is structurally related to hemoglobin and myoglobin, being complemented by about 20 extra residues both on the N and C termini. In the absence of exogenous ligands (e.g. O2), the cytoglobin distal HisE7 residue is coordinated to the heme Fe atom, thus decreasing the ligand affinity. The crystal structure of human cytoglobin (2…
A Structural Model of the Human α7 Nicotinic Receptor in an Open Conformation
2015
International audience; Nicotinic acetylcholine receptors (nAchRs) are ligand-gated ion channels that regulate chemical transmission at the neuromuscular junction. Structural information is available at low resolution from open and closed forms of an eukaryotic receptor, and at high resolution from other members of the same structural family, two prokaryotic orthologs and an eukary- otic GluCl channel. Structures of human channels however are still lacking. Homology modeling and Molecular Dynamics simulations are valuable tools to predict structures of unknown proteins, however, for the case of human nAchRs, they have been unsuccessful in providing a stable open structure so far. This is du…
Snake venom disintegrins: evolution of structure and function.
2005
Disintegrins represent a family of polypeptides present in the venoms of various vipers that selectively block the function of integrin receptors. Here, we review our current view and hypothesis on the emergence and the structural and functional diversification of disintegrins by accelerated evolution and the selective loss of disulfide bonds of duplicated genes. Research on disintegrins is relevant for understanding the biology of viper venom toxins, but also provides information on new structural determinants involved in integrin recognition that may be useful in basic and clinical research. The role of the composition, conformation, and dynamics of the integrin inhibitory loop acting in …