Search results for "alignment"
showing 10 items of 627 documents
Evolution of nacre: biochemistry and proteomics of the shell organic matrix of the cephalopod Nautilus macromphalus.
2009
12 pages; International audience; In mollusks, one of the most widely studied shell textures is nacre, the lustrous aragonitic layer that constitutes the internal components of the shells of several bivalves, a few gastropods, and one cephalopod: the nautilus. Nacre contains a minor organic fraction, which displays a wide range of functions in relation to the biomineralization process. Here, we have biochemically characterized the nacre matrix of the cephalopod Nautilus macromphalus. The acid-soluble matrix contains a mixture of polydisperse and discrete proteins and glycoproteins, which interact with the formation of calcite crystals. In addition, a few bind calcium ions. Furthermore, we h…
Phylointeractomics reconstructs functional evolution of protein binding
2017
Molecular phylogenomics investigates evolutionary relationships based on genomic data. However, despite genomic sequence conservation, changes in protein interactions can occur relatively rapidly and may cause strong functional diversification. To investigate such functional evolution, we here combine phylogenomics with interaction proteomics. We develop this concept by investigating the molecular evolution of the shelterin complex, which protects telomeres, across 16 vertebrate species from zebrafish to humans covering 450 million years of evolution. Our phylointeractomics screen discovers previously unknown telomere-associated proteins and reveals how homologous proteins undergo functiona…
On temporal deixis and cognitive models in early Indo-European
2013
Crosslinguistic evidence suggest that there are two different (often coexistent) basic cognitive models for time, on the basis of which the world’s languages express time in terms of conceptual metaphor from the source spatial domain to the target temporal domain: i) the Time-based (Time-Reference-Point) model, in which time is conceptualized in terms of sequentially arrayed objects moving in space, so that a temporal event is relative to another earlier or later temporal event; ii) the Ego-based (Ego-Reference-Point) model, which is considered to have a more complex structure in which times are conceptualized as objects relative to a canonical deictic observer (Ego) located at the hic et n…
Alignment for the first precision measurements at Belle II
2019
On March 25th 2019, the Belle II detector recorded the first collisions delivered by the SuperKEKB accelerator. This marked the beginning of the physics run with vertex detector. The vertex detector was aligned initially with cosmic ray tracks without magnetic field simultaneously with the drift chamber. The alignment method is based on Millepede II and the General Broken Lines track model and includes also the muon system or primary vertex position alignment. To control weak modes, we employ sensitive validation tools and various track samples can be used as alignment input, from straight cosmic tracks to mass-constrained decays. With increasing luminosity and experience, the alignment is …
Large-scale analysis of SARS-CoV-2 spike-glycoprotein mutants demonstrates the need for continuous screening of virus isolates
2021
Due to the widespread of the COVID-19 pandemic, the SARS-CoV-2 genome is evolving in diverse human populations. Several studies already reported different strains and an increase in the mutation rate. Particularly, mutations in SARS-CoV-2 spike-glycoprotein are of great interest as it mediates infection in human and recently approved mRNA vaccines are designed to induce immune responses against it. We analyzed 1,036,030 SARS-CoV-2 genome assemblies and 30,806 NGS datasets from GISAID and European Nucleotide Archive (ENA) focusing on non-synonymous mutations in the spike protein. Only around 2.5% of the samples contained the wild-type spike protein with no variation from the reference. Among…
Development of type-specific and cross-reactive serological probes for the minor capsid protein of human papillomavirus type 33.
1993
Human papillomavirus type 33 (HPV33) is associated with malignant tumors of the cervix. In an attempt to develop immunological probes for HPV33 infections, antisera against various bacterial fusion proteins carrying sequences of the minor capsid protein encoded by L2 were raised in animals. Antigenic determinants on the HPV33 L2 protein were identified by using truncated fusion proteins and were classified as type specific or cross-reactive with respect to HPV1, -8, -11, -16, and -18. Cross-reactive epitopes map to amino acids 98 to 107 or to amino acids 102 to 112 and 107 to 117, respectively, depending on the fusion protein used for immunization. Antibodies directed toward these epitopes …
ZFWD: a novel subfamily of plant proteins containing a C3H zinc finger and seven WD40 repeats
2000
We describe a new subfamily of WD repeat proteins characterised by the presence of a C3H zinc finger at the N-terminal part of the protein associated with seven WD40 repeats. We have identified four members of this subfamily in Arabidopsis thaliana, one of them with associated expressed sequence tags (ESTs). We have also identified homologous ESTs in rice, cotton, maize, poplar, pine tree and the ice plant. We do not observe animal homologues, suggesting that this subfamily could be specific for plants. Our data suggest an important role for these proteins. Based on the high sequence conservation within the conserved domains, we suggest that these proteins could have a regulatory function.
Repeatability in protein sequences
2019
Low complexity regions (LCRs) in protein sequences have special properties that are very different from those of globular proteins. The rules that define secondary structure elements do not apply when the distribution of amino acids becomes biased. While there is a tendency towards structural disorder in LCRs, various examples, and particularly homorepeats of single amino acids, suggest that very short repeats could adopt structures very difficult to predict. These structures are possibly variable and dependant on the context of intra- or inter-molecular interactions. In general, short repeats in LCRs can induce structure. This could explain the observation that very short (non-perfect) rep…
REP2: A Web Server to Detect Common Tandem Repeats in Protein Sequences
2020
Ensembles of tandem repeats (TRs) in protein sequences expand rapidly to form domains well suited for interactions with proteins. For this reason, they are relatively frequent. Some TRs have known structures and therefore it is advantageous to predict their presence in a protein sequence. However, since most TRs diverge quickly, their detection by classical sequence comparison algorithms is not very accurate. Previously, we developed a method and a web server that used curated profiles and thresholds for the detection of 11 common TRs. Here we present a new web server (REP2) that allows the analysis of TRs in both individual and aligned sequences. We provide currently precomputed analyses f…
Relationships of gag-pol diversity between Ty3/Gypsy and Retroviridae LTR retroelements and the three kings hypothesis
2008
Abstract Background The origin of vertebrate retroviruses (Retroviridae) is yet to be thoroughly investigated, but due to their similarity and identical gag-pol (and env) genome structure, it is accepted that they evolve from Ty3/Gypsy LTR retroelements the retrotransposons and retroviruses of plants, fungi and animals. These 2 groups of LTR retroelements code for 3 proteins rarely studied due to the high variability – gag polyprotein, protease and GPY/F module. In relation to 3 previously proposed Retroviridae classes I, II and II, investigation of the above proteins conclusively uncovers important insights regarding the ancient history of Ty3/Gypsy and Retroviridae LTR retroelements. Resu…