Search results for "alignment"
showing 10 items of 627 documents
Alignment-Free Sequence Comparison over Hadoop for Computational Biology
2015
Sequence comparison i.e., The assessment of how similar two biological sequences are to each other, is a fundamental and routine task in Computational Biology and Bioinformatics. Classically, alignment methods are the de facto standard for such an assessment. In fact, considerable research efforts for the development of efficient algorithms, both on classic and parallel architectures, has been carried out in the past 50 years. Due to the growing amount of sequence data being produced, a new class of methods has emerged: Alignment-free methods. Research in this ares has become very intense in the past few years, stimulated by the advent of Next Generation Sequencing technologies, since those…
Subunit sequences of the 4 x 6-mer hemocyanin from the golden orb-web spider, Nephila inaurata. Intramolecular evolution of the chelicerate hemocyani…
2003
The transport of oxygen in the hemolymph of many arthropod and mollusc species is mediated by large copper-proteins that are referred to as hemocyanins. Arthropod hemocyanins are composed of hexamers and oligomers of hexamers. Arachnid hemocyanins usually form 4 x 6-mers consisting of seven distinct subunit types (termed a-g), although in some spider taxa deviations from this standard scheme have been observed. Applying immunological and electrophoretic methods, six distinct hemocyanin subunits were identified in the red-legged golden orb-web spider Nephila inaurata madagascariensis (Araneae: Tetragnathidae). The complete cDNA sequences of six subunits were obtained that corresponded to a-,…
Pythium regulare sp. nov., Isolated from the Canary Islands, Its Taxonomy, Its Region of rDNA, and Comparison with Related Species
2003
Pythium regulare (CI-34) was isolated from some soil samples taken in the Canary Islands (Spain). This new species is very closely related to P. irregulare isolated from pea roots in The Netherlands by Buisman in 1927. The species of Pythium are members of the kingdom Chromista. Pythium regulare is characterized by its ornamented oogonia bearing blunt or digitate spines, and its non-sporulating type of sporangia or hyphal bodies, its aplerotic oospores, its monoclinous and diclinous antheridia that at times crowd around the oogonia. The taxonomic description of this oomycete, the PCR of the internal transcribed region (spacers ITS1, ITS2, and the gene 5.8 S) of its ribosomal nuclear DNA as …
Pythium carbonicum, a new species isolated from a spoil heap in northern France, the ITS region, taxonomy and comparison with related species.
2003
Pythium carbonicum (F-72) sp. nov. was found in soil samples taken on the top of a spoil heap in northern France. The morphology of this new species resembles that of a recently described species: Pythium megacarpum. However, the antheridial and oogonial characteristics of this new species are unique, and the comparison of its ITS region of the nuclear ribosomal DNA indicates that this species is also related to the genus Phytophthora. The fungus does not sporulate, the sporangia germinate directly into mycelium through germ tubes. The oogonia of P. carbonicum are smooth-walled and also papillated, and are provided with monoclinous and diclinous antheridia that wrap around, forming a compli…
BGSA: a bit-parallel global sequence alignment toolkit for multi-core and many-core architectures
2018
Abstract Motivation Modern bioinformatics tools for analyzing large-scale NGS datasets often need to include fast implementations of core sequence alignment algorithms in order to achieve reasonable execution times. We address this need by presenting the BGSA toolkit for optimized implementations of popular bit-parallel global pairwise alignment algorithms on modern microprocessors. Results BGSA outperforms Edlib, SeqAn and BitPAl for pairwise edit distance computations and Parasail, SeqAn and BitPAl when using more general scoring schemes for pairwise alignments of a batch of sequence reads on both standard multi-core CPUs and Xeon Phi many-core CPUs. Furthermore, banded edit distance perf…
Acceleration of short and long DNA read mapping without loss of accuracy using suffix array
2014
HPG Aligner applies suffix arrays for DNA read mapping. This implementation produces a highly sensitive and extremely fast mapping of DNA reads that scales up almost linearly with read length. The approach presented here is faster (over 20 for long reads) and more sensitive (over 98% in a wide range of read lengths) than the current state-of-the-art mappers. HPG Aligner is not only an optimal alternative for current sequencers but also the only solution available to cope with longer reads and growing throughputs produced by forthcoming sequencing technologies.
Assessment of the probabilities for evolutionary structural changes in protein folds.
2007
Abstract Motivation: The evolution of protein sequences can be described by a stepwise process, where each step involves changes of a few amino acids. In a similar manner, the evolution of protein folds can be at least partially described by an analogous process, where each step involves comparatively simple changes affecting few secondary structure elements. A number of such evolution steps, justified by biologically confirmed examples, have previously been proposed by other researchers. However, unlike the situation with sequences, as far as we know there have been no attempts to estimate the comparative probabilities for different kinds of such structural changes. Results: We have tried …
CARE: context-aware sequencing read error correction.
2020
Abstract Motivation Error correction is a fundamental pre-processing step in many Next-Generation Sequencing (NGS) pipelines, in particular for de novo genome assembly. However, existing error correction methods either suffer from high false-positive rates since they break reads into independent k-mers or do not scale efficiently to large amounts of sequencing reads and complex genomes. Results We present CARE—an alignment-based scalable error correction algorithm for Illumina data using the concept of minhashing. Minhashing allows for efficient similarity search within large sequencing read collections which enables fast computation of high-quality multiple alignments. Sequencing errors ar…
The Power of Word-Frequency Based Alignment-Free Functions: a Comprehensive Large-Scale Experimental Analysis
2021
Abstract Motivation Alignment-free (AF) distance/similarity functions are a key tool for sequence analysis. Experimental studies on real datasets abound and, to some extent, there are also studies regarding their control of false positive rate (Type I error). However, assessment of their power, i.e. their ability to identify true similarity, has been limited to some members of the D2 family. The corresponding experimental studies have concentrated on short sequences, a scenario no longer adequate for current applications, where sequence lengths may vary considerably. Such a State of the Art is methodologically problematic, since information regarding a key feature such as power is either mi…
Long read alignment based on maximal exact match seeds
2012
Abstract Motivation: The explosive growth of next-generation sequencing datasets poses a challenge to the mapping of reads to reference genomes in terms of alignment quality and execution speed. With the continuing progress of high-throughput sequencing technologies, read length is constantly increasing and many existing aligners are becoming inefficient as generated reads grow larger. Results: We present CUSHAW2, a parallelized, accurate, and memory-efficient long read aligner. Our aligner is based on the seed-and-extend approach and uses maximal exact matches as seeds to find gapped alignments. We have evaluated and compared CUSHAW2 to the three other long read aligners BWA-SW, Bowtie2 an…