Search results for "alkali"
showing 10 items of 566 documents
Integrative analysis of the mineralogical and chemical composition of modern microbialites from ten Mexican lakes: What do we learn about their forma…
2021
International audience; Interpreting the environmental conditions under which ancient microbialites formed relies upon comparisons with modern analogues. This is why we need a detailed reference framework relating the chemical and mineralogical compositions of modern microbialites to the physical and chemical parameters prevailing in the environments where they form. Here, we measured the chemical, including major and trace elements, and mineralogical composition of microbialites from ten Mexican lakes as well as the chemical composition of the surrounding waters. Saturation states of lakes with different mineral phases were systematically determined and correlations between solution and so…
Coloration mechanism of electrochromic Na x WO3 thin films
2019
International audience; The coloration mechanism of tungsten trioxide (WO3) upon insertion of alkali ions is still under debate after several decades of research. This Letter provides new insights into the reversible insertion and coloration mechanisms of Na+ ions in WO3 thin films sputter-deposited on ITO/glass substrates. A unique model based on a constrained spline approach was developed and applied to draw out ε1+iε2 from spectroscopic ellipsometry data from 0.6 to 4.8 eV whatever the state of the electrochromic active layer, i.e. as-deposited, colored or bleached. It is shown that electrochemically intercalated sodium-tungsten trioxide, NaxWO3 (x=0.1, 0.2, 0.35), exhibits an absorption…
First principles hybrid Hartree-Fock-DFT calculations of bulk and (001) surface F centers in oxide perovskites and alkaline-earth fluorides
2020
Valuable discussions with E. A. Kotomin are gratefully acknowledged. Research contribution of R. E. and A. I. P. has been performed within the framework of the EUROfusion Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion applications.” The views and opinions expressed herein do not necessarily reflect those of the European Commission.
A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant
2016
For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constant of 5.803Å, and has the maximum atomic-like magn…
Efficiency of H center stabilization in alkali halide crystals at low-temperature uniaxial deformation
2020
The efficiency of stabilization of H centers as well as its dependence on the degree of uniaxial deformation are considered within the framework of the modified geometric model of alkali halides. It is shown that stabilization of H centers is difficult in KI and RbI crystals, while in other NaCl-type crystals it becomes quite probable. Under uniaxial deformation, the interstitial space, in which the defect will be located, decreases, and the efficiency decrease. In the case of cesium halides, the orientation of the H centers takes place predominantly in the direction; therefore, the criteria for their stabilization differ from the NaCl-type alkali halide crystals. According to calculations,…
Coupled-Cluster study of ‘no-pair’ bonding in the tetrahedral Cu4 cluster
2011
Abstract Ab initio Coupled-Cluster calculations with single and double excitations and perturbative correction to the triple, CCSD(T), have been carried out for the high-spin electronic state, ( 5 A 2 ) , of the copper cluster Cu 4 in its tetrahedral arrangement. Like alkali metals clusters, tetrahedral Cu 4 presents a bound quintet state, i.e., a situation where all the valence electrons are unpaired. This rather exotic wavefunction, also known as no-pair bonding state, is examined in detail. The influence of the basis set is also analyzed, as well as the importance of the core correlation and the effect of the basis-set superposition errors.
pKa at Quartz/Electrolyte Interfaces.
2016
Acidity of silanol sites at the crystalline quartz/aqueous electrolyte (NaCl, NaI, KCl) interfaces are calculated from ab initio molecular dynamics simulations. pKa’s are found to follow a combination of the cationic and anionic Hofmeister series in the order pKa(neat solution) < pKa(NaCl) < pKa(NaI) < pKa(KCl), in agreement with experimental measurements. Rationalization of this ranking is achieved in terms of the microscopic local solvation of the protonated silanols and their conjugated bases, the silanolates SiO–. The change in the pKa is the result of both water destructuring by alkali halides, as well as of the specific cation/SiO– interaction, depending on the electrolyte. M…
Localization of alkali metal ions in sodium-promoted palladium catalysts as studied by low energy ion scattering and transmission electron microscopy
1996
Three series of palladium-based catalysts have been studied by Low Energy Ion Scattering (LEIS) and Transmission Electron Microscopy (TEM). The first series is comprised of Na-Pd/SiO{sub 2} catalysts, obtained by addition of palladium to a silica support and by further addition of sodium ions with a Na/Pd atomic ratio (R) equal to 0,6.4 and 25.6. The second series consists of palladium catalysts supported on natural pumice, in which, due to a different loading of supported palladium, R{prime}, the (Na+K)/Pd atomic ratio, is equal to 17.0 and 39.4. The third series is represented by two palladium-based catalysts supported on {open_quotes}model pumices,{close_quotes} synthetic silico-aluminat…
Alkali Blues: Blue‐Emissive Alkali Metal Pyrrolates
2019
2-Iminopyrroles [HtBu L, 4-tert-butyl phenyl(pyrrol-2-ylmethylene)amine] are non-fluorescent π systems. However, they display blue fluorescence after deprotonation with alkali metal bases in the solid state and in solution at room temperature. In the solid state, the alkali metal 2-imino pyrrolates, M(tBu L), aggregate to dimers, [M(tBu L)(NCR)]2 (M=Li, R=CH3 , CH(CH3 )CNH2 ), or polymers, [M(tBu L)]n (M=Na, K). In solution (solv=CH3 CN, DMSO, THF, and toluene), solvated, uncharged monomeric species M(tBu L)(solv)m with N,N'-chelated alkali metal ions are present. Due to the electron-rich pyrrolate and the electron-poor arylimino moiety, the M(tBu L) chromophore possesses a low-energy intra…
The hetero-cubane structures of the heavy alkali metal tert-amyloxides [MOCMe2Et]4 (M = K, Rb, Cs)
2018
A series of alkali metal (Li–Cs) alkoxides of tert-pentanol (1,1-dimethylpropan-1-ol) have been prepared by reaction of the corresponding metal with the alcohol in n-hexane or n-heptane. The compounds were purified by vacuum sublimation and crystallised in n-hexane to produce crystals suitable for single-crystal X-ray diffraction studies. The structures of the potassium, rubidium, and caesium compounds revealed tetrameric units with additional intra- and intermolecular interactions between the metal atom and alkoxide methyl groups, increasing with the size of the metal involved.