Search results for "alpha-synuclein"

showing 10 items of 31 documents

2019

Abstract Tyrosine nitration is a post-translational protein modification relevant to various pathophysiological processes. Chemical nitration procedures have been used to generate and study nitrated proteins, but these methods regularly lead to modifications at other amino acid residues. A novel strategy employs a genetic code modification that allows incorporation of 3-nitrotyrosine (3-NT) during ribosomal protein synthesis to generate a recombinant protein with defined 3-NT-sites, in the absence of other post-translational modifications. This approach was applied to study the generation and stability of the 3-NT moiety in recombinant proteins produced in E.coli. Nitrated alpha-synuclein (…

0301 basic medicineAlpha-synucleinchemistry.chemical_classificationOrganic ChemistryClinical BiochemistryGenetic codeBiochemistryGreen fluorescent proteinAmino acidlaw.invention03 medical and health scienceschemistry.chemical_compound030104 developmental biology0302 clinical medicinechemistryBiochemistryRibosomal proteinlawNitrationRecombinant DNA030217 neurology & neurosurgeryGenetic screenRedox Biology
researchProduct

Trifluoroethanol modulates α-synuclein amyloid-like aggregate formation, stability and dissolution

2016

The conversion of proteins into amyloid fibrils and other amyloid-like aggregates is closely connected to the onset of a series of age-related pathologies. Upon changes in environmental conditions, amyloid-like aggregates may also undergo disassembly into oligomeric aggregates, the latter being recognized as key effectors in toxicity. This indicates new possible routes for in vivo accumulation of toxic species. In the light of the recognized implication of α-Synuclein (αSN) in Parkinson's disease, we present an experimental study on supramolecular assembly of αSN with a focus on stability and disassembly paths of such supramolecular aggregate species. Using spectroscopic techniques, two-pho…

0301 basic medicineAmyloidAmyloidBiophysicsSupramolecular chemistryProtein aggregationBiochemistrySupramolecular assembly03 medical and health scienceschemistry.chemical_compoundProtein AggregatesHumansDissolutionAlpha-synucleinProtein Stabilityproteins amyloid fibrils amyloid-like aggregates oligomeric aggregatesSpectrum AnalysisOrganic ChemistryAggregate (data warehouse)TemperatureTrifluoroethanolAmyloid fibrilCrystallography030104 developmental biologychemistryBiophysicsalpha-Synuclein
researchProduct

Neurodegeneration in tauopathies and synucleinopathies.

2016

International audience; While increasing life expectancy is a major achievement, the global aging of societies raises a number of medical issues, such as the development of age-related disorders, including neurodegenerative diseases. The three main disease groups constituting the majority of neurodegenerative diseases are tauopathies, alpha-synucleinopathies and diseases due to repetitions of glutamine (including Huntington's disease). In each neurodegenerative disease, the accumulation of one or more aggregated proteins has been identified as the molecular signature of the disease (as seen, for example, in Alzheimer's disease, Parkinson's disease, dementia with Lewy bodies, amyotrophic lat…

0301 basic medicineLewy Body DiseaseParkinson's disease[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyParkinson's diseaseDementia with Lewy bodiesMédecine humaine et pathologieDiseaseBioinformatics03 medical and health scienceschemistry.chemical_compound0302 clinical medicineParkinsonian Disorders[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyMedicineDementiaHumansCytoskeletonSynucleinopathiesAlpha-synucleinInclusion Bodiesbusiness.industryDementia with Lewy bodiesNeurodegenerative diseasesNeurodegenerationassociationBrainNeurodegenerative DiseasesAlzheimer's diseasemedicine.disease3. Good health030104 developmental biologyNeurologychemistryTauopathies[ SDV.NEU.NB ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyNerve Degenerationalpha-SynucleinDementiapathologyNeurology (clinical)businessNeuroscience030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyFrontotemporal dementiadementiaRevue neurologique
researchProduct

Synaptic Regulator α-Synuclein in Dopaminergic Fibers Is Essentially Required for the Maintenance of Subependymal Neural Stem Cells.

2018

Synaptic protein -synuclein (-SYN) modulates neurotransmission in a complex and poorly understood manner and aggregates in the cytoplasm of degenerating neurons in Parkinsons disease. Here, we report that -SYN present in dopaminergic nigral afferents is essential for the normal cycling and maintenance of neural stem cells (NSCs) in the brain subependymal zone of adult male and female mice. We also showthat premature senescence of adult NSCs into non-neurogenic astrocytes in mice lacking-SYN resemblesthe effects of dopaminergic fiber degeneration resulting from chronic exposure to 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine or intranigral inoculation of aggregated toxic -SYN. Interestingly…

0301 basic medicineMaleanimal diseases[SDV]Life Sciences [q-bio]DopamineNeurogenesisRegulatorniche biologyBiologyNeurotransmissionenvironment and public health03 medical and health scienceschemistry.chemical_compoundstemnessMice0302 clinical medicineNeural Stem CellsDopaminemedicineSubependymal zoneAnimalsHumansheterocyclic compoundsNeurons AfferentStem Cell NicheResearch ArticlesparkinsonismCellular SenescenceGeneral NeuroscienceMPTPDopaminergic NeuronsNeurogenesisDopaminergicBrainNeural stem cellMice Mutant Strains3. Good healthnervous system diseases[SDV] Life Sciences [q-bio]adult neurogenesis030104 developmental biologychemistrynervous systemalpha-SynucleinFemaleNeuroscience030217 neurology & neurosurgerySnca knock-outmedicine.drug
researchProduct

High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy

2017

The analysis of the α-synuclein (aS) aggregation process, which is involved in Parkinson's disease etiopathogenesis, and of the structural feature of the resulting amyloid fibrils may shed light on the relationship between the structure of aS aggregates and their toxicity. This may be considered a paradigm of the ground work needed to tackle the molecular basis of all the protein-aggregation-related diseases. With this aim, we used chemical and physical dissociation methods to explore the structural organization of wild-type aS fibrils. High pressure (in the kbar range) and alkaline pH were used to disassemble fibrils to collect information on the hierarchic pathway by which distinct β-sh…

0301 basic medicineModels MolecularCircular dichroismAmyloidProtein FoldingProtein domainBeta sheetBiophysicsFibrilMicroscopy Atomic ForceSpectrum Analysis RamanDissociation (chemistry)03 medical and health sciences0302 clinical medicineProtein structureMicroscopy Electron TransmissionProtein DomainsSpectroscopy Fourier Transform InfraredEscherichia coliPressureChemistryCircular DichroismEnergy landscapeProteinsalpha synuclein amyloid recombinant proteinHydrogen-Ion ConcentrationRecombinant ProteinsCrystallography030104 developmental biologyMutationalpha-SynucleinProtein foldingProtein Conformation beta-StrandProtein Multimerization030217 neurology & neurosurgery
researchProduct

Contribution of cholesterol and oxysterols to the pathophysiology of Parkinson's disease

2016

International audience; Neurodegenerative diseases are a major public health issue worldwide. Some countries, including France, have engaged in research into the causes of Parkinson's disease, Alzheimer's disease, and multiple sclerosis and the management of these patients. It should lead to a better understanding of the mechanisms leading to these diseases including the possible involvement of lipids in their pathogenesis. Parkinson's disease is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra and the accumulation of α-synuclein (Lewy bodies). Several in vivo studies have shown a relationship between the lipid profile [chole…

0301 basic medicinePathologymedicine.medical_specialtyParkinson's diseaseOxysterolParkinson's diseasePresynaptic TerminalsSubstantia nigraDiseaseBiologyBioinformaticsBiochemistryPathogenesisProtein Aggregates03 medical and health scienceschemistry.chemical_compoundOxysterol0302 clinical medicinePhysiology (medical)medicineHumans[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyAlpha-synucleinCell Deathmedicine.diagnostic_testDopaminergic NeuronsMultiple sclerosisParkinson DiseaseOxysterols[ SDV.MHEP.EM ] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolismmedicine.diseaseSubstantia NigraCholesterol030104 developmental biologychemistryalpha-Synucleinlipids (amino acids peptides and proteins)Lipid profileOxidation-Reduction030217 neurology & neurosurgeryFree Radical Biology and Medicine
researchProduct

Human R1441C LRRK2 regulates the synaptic vesicle proteome and phosphoproteome in a Drosophila model of Parkinson's disease

2016

International audience; Mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset, autosomal dominant familial Parkinsons disease (PD) and variation at the LRRK2 locus contributes to the risk for idiopathic PD. LRRK2 can function as a protein kinase and mutations lead to increased kinase activity. To elucidate the pathophysiological mechanism of the R1441C mutation in the GTPase domain of LRRK2, we expressed human wild-type or R1441C LRRK2 in dopaminergic neurons of Drosophila and observe reduced locomotor activity, impaired survival and an age-dependent degeneration of dopaminergic neurons thereby creating a new PD-like model. To explore the function of LRRK2 variants in vivo, we …

0301 basic medicineProteomerab3 GTP-Binding Proteinsalpha-synucleindomainSyntaxin 1Interactomedopaminergic-neuronsAnimals Genetically Modifiedchemistry.chemical_compound0302 clinical medicinemicrotubule stabilityDrosophila ProteinsProtein Interaction MapsGenetics (clinical)LRRK2 GeneKinasephosphorylationBrainParkinson DiseaseArticlesGeneral Medicineautosomal-dominant parkinsonismLRRK2Drosophila melanogasterSynaptotagmin IProteomePhosphorylationSynaptic VesiclesNerve Tissue ProteinsBiologyLeucine-Rich Repeat Serine-Threonine Protein Kinase-203 medical and health sciencesGeneticsAnimalsHumansKinase activitygeneMolecular BiologyAlpha-synucleingtp-bindingDopaminergic Neuronsrepeat kinase 2Molecular biologyPhosphoric Monoester Hydrolasesnervous system diseasesDisease Models Animal030104 developmental biologyGene Expression Regulationchemistrymutation030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Pressure effects on α-synuclein amyloid fibrils: An experimental investigation on their dissociation and reversible nature

2017

α–synuclein amyloid fibrils are found in surviving neurons of Parkinson's disease affected patients, but the role they play in the disease development is still under debate. A growing number of evidences points to soluble oligomers as the major cytotoxic species, while insoluble fibrillar aggregates could even play a protection role. In this work, we investigate α–synuclein fibrils dissociation induced at high pressure by means of Small Angle X-ray Scattering and Fourier Transform Infrared Spectroscopy. Fibrils were produced from wild type α–synuclein and two familial mutants, A30P and A53T. Our results enlighten the different reversible nature of α–synuclein fibrils fragmentati…

0301 basic medicineSmall AngleAmyloidHigh-pressureMutantBiophysicsmacromolecular substances010402 general chemistryFibril01 natural sciencesBiochemistryDissociation (chemistry)Scattering03 medical and health scienceschemistry.chemical_compoundX-Ray DiffractionScattering Small AngleSpectroscopy Fourier Transform InfraredPressureHumansPoint MutationFourier transform infrared spectroscopyMolecular BiologySpectroscopyAlpha-synucleinAmyloid; FTIR; High-pressure; SAXS; α-synuclein; Amyloid; Humans; Parkinson Disease; Point Mutation; Pressure; Scattering Small Angle; Solubility; Spectroscopy Fourier Transform Infrared; X-Ray Diffraction; alpha-Synuclein; Biophysics; Biochemistry; Molecular BiologySmall-angle X-ray scatteringWild typeα-synucleinParkinson DiseaseSAXSAmyloid fibril0104 chemical sciences?-synucleinCrystallography030104 developmental biologyBiophysicchemistryFTIRSolubilityFourier Transform InfraredBiophysicsalpha-SynucleinHuman
researchProduct

Selective α-synuclein knockdown in monoamine neurons by intranasal oligonucleotide delivery: potential therapy for parkinson’s disease

2018

Progressive neuronal death in brainstem nuclei and widespread accumulation of α-synuclein are neuropathological hallmarks of Parkinson’s disease (PD). Reduction of α-synuclein levels is therefore a potential therapy for PD. However, because α-synuclein is essential for neuronal development and function, α-synuclein elimination would dramatically impact brain function. We previously developed conjugated small interfering RNA (siRNA) sequences that selectively target serotonin (5-HT) or norepinephrine (NE) neurons after intranasal administration. Here, we used this strategy to conjugate inhibitory oligonucleotides, siRNA and antisense oligonucleotide (ASO), with the triple monoamine reuptake …

0301 basic medicineanimal diseasesDopamineOligonucleotidesGene ExpressionPharmacologySynaptic TransmissionPrefrontal cortexMiceDA neurotransmission0302 clinical medicineDrug DiscoveryMonoaminergicNeural PathwaysRNA Small InterferingCells Cultured5-HT neurotransmissionChemistryGene Transfer TechniquesParkinson DiseaseVentral tegmental areaSubstantia Nigramedicine.anatomical_structureCaudate putamenGene Knockdown Techniquesalpha-SynucleinMolecular MedicineRNA InterferenceOriginal ArticleMonoamine reuptake inhibitormedicine.drugSignal TransductionSerotoninSubstantia nigraASO03 medical and health sciencesProsencephalonα-synucleinDopamineIntranasal administrationGeneticsmedicineAnimalsHumansMolecular BiologyAdministration IntranasalPharmacologyPars compactaDopaminergic NeuronsGenetic TherapyCorpus Striatumnervous system diseases030104 developmental biologyMonoamine neurotransmitterGene Expression Regulationnervous systemsiRNAParkinson’s diseaseLocus coeruleus030217 neurology & neurosurgery
researchProduct

MicroRNAs Dysregulation and Metabolism in Multiple System Atrophy.

2019

Multiple system atrophy (MSA) is an adult onset, fatal disease, characterized by an accumulation of alpha-synuclein (α-syn) in oligodendroglial cells. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-translational regulation and several biological processes. Disruption of miRNA-related pathways in the central nervous system (CNS) plays an important role in the pathogenesis of neurodegenerative diseases, including MSA. While the exact mechanisms underlying miRNAs in the pathogenesis of MSA remain unclear, it is known that miRNAs can repress the translation of messenger RNAs (mRNAs) that regulate the following pathogenesis associated with MSA: autophagy, neuroinflammation, α-syn …

0301 basic medicineautophagyalpha-synucleinCentral nervous systemmultiple system atrophyReviewBiologylcsh:RC321-571neuroinflammationPathogenesis03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAtrophystomatognathic systemmicroRNAmental disordersmedicinelcsh:Neurosciences. Biological psychiatry. NeuropsychiatryNeuroinflammationAlpha-synucleinmicroRNAGeneral NeuroscienceAutophagyTranslation (biology)medicine.diseaseCell biologynervous system diseases030104 developmental biologymedicine.anatomical_structurechemistrynervous system030217 neurology & neurosurgeryNeuroscienceFrontiers in neuroscience
researchProduct