Search results for "alpha-synuclein"

showing 10 items of 31 documents

p27Kip1 regulates alpha-synuclein expression

2018

Alpha-synuclein (α-SYN) is the main component of anomalous protein aggregates (Lewy bodies) that play a crucial role in several neurodegenerative diseases (synucleinopathies) like Parkinson’s disease and multiple system atrophy. However, the mechanisms involved in its transcriptional regulation are poorly understood. We investigated here the role of the cyclin-dependent kinase (Cdk) inhibitor and transcriptional regulator p27Kip1 (p27) in the regulation of α-SYN expression. We observed that selective deletion of p27 by CRISPR/Cas9 technology in neural cells resulted in increased levels of α-SYN. Knock-down of the member of the same family p21Cip1 (p21) also led to increased α-SYN levels, in…

0301 basic medicinep27Kip1[SDV]Life Sciences [q-bio]03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCyclin-dependent kinaseTranscriptional regulationalpha synucleinAlpha synucleinPsychological repressionE2F4Alpha-synucleinSynucleinopathiesbiologyPromoterEnzyme inhibitorsMolecular biologyExpressió gènica3. Good healthnervous system diseases030104 developmental biologyOncologychemistryInhibidors enzimàticsnervous systemE2F4biology.proteinGene expressionTranscription Factor E2F4transcriptionp21Cip1Transcription030217 neurology & neurosurgeryResearch Paper
researchProduct

A53T-Alpha-Synuclein Overexpression Impairs Dopamine Signaling and Striatal Synaptic Plasticity in Old Mice

2010

BACKGROUND: Parkinson's disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression or the A53T missense mutation of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used two mouse lines overexpressing human A53T-SNCA and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. To characterize the progression, we employed young adult as well as old mice. Analysis of striatal neurotransmitter content demonstrated that dopamine (DA…

AgingDopaminelcsh:MedicineMicechemistry.chemical_compoundHomer Scaffolding ProteinsReceptor Cannabinoid CB1lcsh:ScienceLong-term depressionNeurotransmitterChromatography High Pressure LiquidIn Situ Hybridization FluorescenceOligonucleotide Array Sequence AnalysisMice KnockoutNeuronal PlasticityMultidisciplinaryReverse Transcriptase Polymerase Chain ReactionDopaminergicNeurodegenerationGenetics and Genomics/Gene ExpressionElectrophysiologyalpha-SynucleinResearch ArticleRadioimmunoprecipitation Assaymedicine.medical_specialtyNeuronal Calcium-Sensor ProteinsHOMER1Substantia nigraNeurotransmissionBiologyNeurological DisordersInternal medicinemedicineAnimalsHumansddc:610Cyclic Nucleotide Phosphodiesterases Type 7Activating Transcription Factor 2lcsh:RNeuropeptidesmedicine.diseaseMolecular biologyCorpus StriatumMice Mutant StrainsEndocrinologyGenetics and Genomics/Disease ModelschemistrySynaptic plasticitylcsh:QCarrier ProteinsPLoS ONE
researchProduct

Stressor-related impairment of synaptic transmission in hippocampal slices from α-synuclein knockout mice

2004

The role of alpha-synuclein (alpha-Syn) has recently received considerable attention because it seems to play a role in Parkinson's disease (PD). Missense mutations in the alpha-Syn gene were found in autosomal dominant PD and alpha-Syn was shown to be a major constituent of protein aggregates in sporadic PD and other synucleinopathies. Under normal conditions, alpha-Syn protein is found exclusively in synaptic terminals. However, the potential participation of alpha-synuclein in maintaining and regulating synaptic efficacy is unknown. We have investigated the excitatory synaptic modulation of alpha-synuclein in CA1 pyramidal neurons, using the in vitro hippocampal slice technique. The 4-am…

Alpha-synucleinanimal diseasesGeneral NeuroscienceHippocampusNeurotransmissionBiologynervous system diseaseschemistry.chemical_compoundSynaptic fatiguenervous systemchemistrySynaptic augmentationSynaptic plasticityKnockout mouseExcitatory postsynaptic potentialNeuroscienceEuropean Journal of Neuroscience
researchProduct

Biomarkers Related to Synaptic Dysfunction to Discriminate Alzheimer’s Disease from Other Neurological Disorders

2022

Recently, the synaptic proteins neurogranin (Ng) and α-synuclein (α-Syn) have attracted scientific interest as potential biomarkers for synaptic dysfunction in neurodegenerative diseases. In this study, we measured the CSF Ng and α-Syn concentrations in patients affected by AD (n = 69), non-AD neurodegenerative disorders (n-AD = 50) and non-degenerative disorders (n-ND, n = 98). The concentrations of CSF Ng and α-Syn were significantly higher in AD than in n-AD and n-ND. Moreover, the Aβ42/Ng and Aβ42/α-Syn ratios showed statistically significant differences between groups and discriminated AD patients from n-AD patients, better than Ng or α-Syn…

Alzheimer’s disease; biomarkers; neurogranin; α-synucleinAmyloid beta-PeptidesneurograninOrganic ChemistrybiomarkersNeurodegenerative Diseasestau ProteinsGeneral MedicineCatalysisSettore MED/01 - Statistica MedicaComputer Science ApplicationsInorganic Chemistryα-synucleinAlzheimer DiseaseFluorodeoxyglucose F18alpha-SynucleinHumansCognitive DysfunctionSettore MED/26 - NeurologiaPhysical and Theoretical ChemistryAlzheimer’s diseaseMolecular BiologySpectroscopyInternational Journal of Molecular Sciences; Volume 23; Issue 18; Pages: 10831
researchProduct

Cholesterol facilitates interactions between α‐synuclein oligomers and charge‐neutral membranes

2015

AbstractOligomeric species formed during α-synuclein fibrillation are suggested to be membrane-disrupting agents, and have been associated with cytotoxicity in Parkinson’s disease. The majority of studies, however, have revealed that the effect of α-synuclein oligomers is only noticeable on systems composed of anionic lipids, while the more physiologically relevant zwitterionic lipids remain intact. We present experimental evidence for significant morphological changes in zwitterionic membranes containing cholesterol, induced by α-synuclein oligomers. Depending on the lipid composition, model membranes are either unperturbed, disrupt, or undergo dramatic morphological changes and segregate …

AmyloidParkinson's diseaseFluorescent DyeBiophysicsPlasma protein bindingBiochemistryOligomerProtein Structure SecondaryMultiphoton microscopyMembrane phase separationCell membranechemistry.chemical_compoundGeneticStructural Biology2-NaphthylamineLaurdan fluorescenceGeneticsFluorescence microscopemedicineMolecular BiologyFluorescent DyesLaurateα-SynucleinMembranesChemistryMedicine (all)2-NaphthylamineCell MembraneMembraneCell BiologySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CholesterolMembranemedicine.anatomical_structureBiophysicBiochemistryStructural biologyOligomeralpha-SynucleinParkinson’s diseaseProtein MultimerizationLaurdanLauratesProtein BindingFEBS Letters
researchProduct

Protein/lipid coaggregates are formed during α-synuclein-induced disruption of lipid bilayers.

2014

Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including the molecular mechanisms behind potential amyloid-mediated toxic effects, is still missing. Interaction between amyloid aggregates and the lipid cell membrane is expected to play a key role in the disease progress. Here, we present experimental data based on hybrid analysis of two-photon-microscopy, solution small-angle X-ray scattering and circular dichroism data. Data show in real time changes in liposome …

Circular dichroismAmyloidPolymers and PlasticsAmyloidLipid BilayersBioengineeringProtein Structure SecondaryBiomaterialsCell membraneMaterials ChemistrymedicineScattering RadiationLipid bilayerSpectroscopyLiposomeLaurdanAdvanced MicroscopyChemistryCircular DichroismX-RaysNeurodegenerationCell MembraneLipid bilayer fusionProteinsmedicine.diseaseamyloid-membrane interactionco-aggregatemedicine.anatomical_structureMembraneBiophysicsalpha-SynucleinLewy BodiesBiomacromolecules
researchProduct

Early impairment of epigenetic pattern in neurodegeneration: Additional mechanisms behind pyrethroid toxicity

2019

Abstract Permethrin is a synthetic pyrethroid extensively used as anti-woodworm agent and for indoor and outdoor pest control. The main route of human exposure is through fruit, vegetable and milk intake. Low dosage exposure to permethrin during neonatal brain development (from postnatal day 6 to postnatal day 21) leads to dopamine decrease in rat striatum nucleus, oxidative stress and behavioural changes linked to the development of Parkinson's like neurodegeneration later in life. The aim of this study was to evaluate the expression of genes involved in the dopaminergic pathway and epigenetic regulatory mechanisms in adolescent rats treated with permethrin during neonatal brain developmen…

Male0301 basic medicineAgingDopamineStriatumPharmacologyBiologyBiochemistryEpigenesis GeneticMECP203 medical and health sciences0302 clinical medicineEndocrinologyDopamineNuclear Receptor Subfamily 4 Group A Member 2parasitic diseasesGeneticsmedicineAnimalsEpigeneticsRats WistarPromoter Regions GeneticDNA Modification MethylasesMolecular BiologyPermethrinOrphan receptorDopaminergicNeurodegenerationNeurodegenerative DiseasesCell BiologyDNA Methylationmedicine.diseaseCorpus StriatumRatsMolecular Docking Simulation030104 developmental biologyAnimals Newbornalpha-SynucleinProtein Multimerization030217 neurology & neurosurgeryPermethrinmedicine.drugExperimental Gerontology
researchProduct

Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system

2000

alpha-Synuclein (alpha-Syn) is a 14 kDa protein of unknown function that has been implicated in the pathophysiology of Parkinson's disease (PD). Here, we show that alpha-Syn-/- mice are viable and fertile, exhibit intact brain architecture, and possess a normal complement of dopaminergic cell bodies, fibers, and synapses. Nigrostriatal terminals of alpha-Syn-/- mice display a standard pattern of dopamine (DA) discharge and reuptake in response to simple electrical stimulation. However, they exhibit an increased release with paired stimuli that can be mimicked by elevated Ca2+. Concurrent with the altered DA release, alpha-Syn-/- mice display a reduction in striatal DA and an attenuation of …

MaleCalbindinsNeuroscience(all)DopamineDopamine AgentsLong-Term PotentiationPresynaptic TerminalsSynucleinsGene ExpressionGlutamic AcidSubstantia nigraNerve Tissue ProteinsNeurotransmissionMotor ActivityHippocampusSynaptic TransmissionReuptakechemistry.chemical_compoundMiceS100 Calcium Binding Protein GDopamineDopaminergic CellmedicineAnimalsAutoreceptorsAlpha-synucleinMice KnockoutNeuronsGeneral NeuroscienceRab3A GTP-Binding ProteinCorpus Striatumrab3A GTP-Binding Proteinnervous system diseasesMice Inbred C57BLSubstantia NigraAmphetaminechemistrynervous systemalpha-SynucleinCalciumFemaleBeta-synucleinNeuroscienceLocomotionmedicine.drug
researchProduct

Gastric α-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology

2005

The progressive degenerative process associated with sporadic Parkinson's disease (sPD) is characterized by formation of alpha-synuclein-containing inclusion bodies in a few types of projection neurons in both the enteric and central nervous systems (ENS and CNS). In the brain, the process apparently begins in the brainstem (dorsal motor nucleus of the vagal nerve) and advances through susceptible regions of the basal mid-and forebrain until it reaches the cerebral cortex. Anatomically, all of the vulnerable brain regions are closely interconnected. Whether the pathological process begins in the brain or elsewhere in the nervous system, however, is still unknown. We therefore used immunocyt…

MaleNervous systemProtein FoldingPathologymedicine.medical_specialtyPrionsModels NeurologicalCentral nervous systemMyenteric PlexusBiologyAxonal TransportCentral nervous system diseaseNeural PathwaysDisease Transmission InfectiousmedicineHumansAgedAged 80 and overInclusion BodiesNeuronsGeneral NeuroscienceBrainParkinson DiseaseVagus NerveSubmucous PlexusMiddle Agedmedicine.diseasemedicine.anatomical_structureDorsal motor nucleusGastric MucosaCerebral cortexForebrainalpha-SynucleinFemaleEnteric nervous systemBrainstemNerve NetNeuroscienceNeuroscience Letters
researchProduct

Neurogranin as a Novel Biomarker in Alzheimer's Disease

2020

Abstract Background In this study, we investigated the possible role of 2 novel biomarkers of synaptic damage, namely, neurogranin and α-synuclein, in Alzheimer disease (AD). Methods The study was performed in a cohort consisting of patients with AD and those without AD, including individuals with other neurological diseases. Cerebrospinal fluid (CSF) neurogranin and α-synuclein levels were measured by sensitive enzyme-linked immunosorbent assays (ELISAs). Results We found significantly increased levels of CSF neurogranin and α-synuclein in patients with AD than those without AD. Neurogranin was correlated with total tau (tTau) and phosphorylated tau (pTau), as well as with cognitive declin…

MaleOncologymedicine.medical_specialtyClinical BiochemistryDiseaseSensitivity and SpecificityCerebrospinal fluidAlzheimer DiseaseInternal medicineHumansMedicineNeurograninCognitive declineAgedRetrospective StudiesReceiver operating characteristicbusiness.industryBiochemistry (medical)Area under the curveMiddle Agedmedicine.diseaseCSF biomarker neurogranin synapsis synaptic loss α-synucleinalpha-SynucleinBiomarker (medicine)FemaleNeurograninAlzheimer's diseasebusinessBiomarkers
researchProduct