Search results for "amyloid"
showing 10 items of 494 documents
Short-Term Effects of Microglia-Specific Mitochondrial Dysfunction on Amyloidosis in Transgenic Models of Alzheimer's Disease.
2018
Reduction of mitochondrial activity is a subtle and early event in the pathogenesis of Alzheimer’s disease. Mitochondrial damage and consequentially enhanced production of reactive oxygen species is particularly occurring in the vicinity of amyloid plaques. Since all cells are affected by mitochondrial damage, analyses of cell type-specific effects are challenging. To study the impact of mitochondrial alterations on microglial activity in a homogeneous genetic background, we generated bone marrow chimeras of irradiated 46-days-old APP-transgenic mice. For reconstitution, bone marrow from CX3CR1-eGFP mice with mitochondria of either non-obese diabetic or C57BL/6J animals was utilized. Succes…
Altered Gut Microbiome Composition and Tryptic Activity of the 5xFAD Alzheimer's Mouse Model.
2017
The regulation of physiological gut functions such as peristalsis or secretion of digestive enzymes by the central nervous system via the Nervus vagus is well known. Recent investigations highlight that pathological conditions of neurological or psychiatric disorders might directly interfere with the autonomous neuronal network of the gut - the enteric nervous system, or even derive from there. By using a murine Alzheimer's disease model, we investigated a potential influence of disease-associated changes on gastrointestinal properties. 5xFAD mice at three different ages were compared to wild type littermates in regard to metabolic parameters and enzymes of the gut by fluorimetric enzyme as…
Proinflammatory and amyloidogenic S100A9 induced by traumatic brain injury in mouse model.
2019
Traumatic brain injury (TBI) represents a significant risk factor for development of neurodegenerative diseases such as Alzheimer’s and Parkinson’s. The S100A9-driven amyloid-neuroinflammatory cascade occurring during primary and secondary TBI events can serve as a mechanistic link between TBI and Alzheimer’s as demonstrated recently in the human brain tissues. Here by using immunohistochemistry in the controlled cortical impact TBI mouse model we have found pro-inflammatory S100A9 in the brain tissues of all mice on the first and third post-TBI days, while 70% of mice did not show any S100A9 presence on seventh post-TBI day similar to controls. This indicates that defensive mechanisms effe…
Domain-specific characterisation of early cognitive impairment following spontaneous intracerebral haemorrhage.
2018
Cognitive deficits after spontaneous intracerebral haemorrhage (ICH) are common and result in functional impairment, but few studies have examined deficits across cognitive domains in the subacute phase. This study aims to describe the cognitive profile following acute ICH and explore how cerebral amyloid angiopathy (CAA) may impact performance. We retrospectively reviewed 187 consecutive patients with ICH (mean age 58.9 years, 55.6% male) with available imaging and neuropsychological data (median 12 days after stroke). In our cohort, 84% (n = 158) were impaired in at least one cognitive domain and 65% (n = 122) in two or more domains. Deficits in non-verbal IQ (76.6%), information processi…
High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy
2017
The analysis of the α-synuclein (aS) aggregation process, which is involved in Parkinson's disease etiopathogenesis, and of the structural feature of the resulting amyloid fibrils may shed light on the relationship between the structure of aS aggregates and their toxicity. This may be considered a paradigm of the ground work needed to tackle the molecular basis of all the protein-aggregation-related diseases. With this aim, we used chemical and physical dissociation methods to explore the structural organization of wild-type aS fibrils. High pressure (in the kbar range) and alkaline pH were used to disassemble fibrils to collect information on the hierarchic pathway by which distinct β-sh…
2020
GM1-gangliosidosis is caused by a reduced activity of β-galactosidase (Glb1), resulting in intralysosomal accumulations of GM1. The aim of this study was to reveal the pathogenic mechanisms of GM1-gangliosidosis in a new Glb1 knockout mouse model. Glb1−/− mice were analyzed clinically, histologically, immunohistochemically, electrophysiologically and biochemically. Morphological lesions in the central nervous system were already observed in two-month-old mice, whereas functional deficits, including ataxia and tremor, did not start before 3.5-months of age. This was most likely due to a reduced membrane resistance as a compensatory mechanism. Swollen neurons exhibited intralysosomal storage …
Serum Levels of Clusterin, PKR, and RAGE Correlate with Amyloid Burden in Alzheimer's Disease.
2021
Background: Alzheimer’s disease (AD) is the most common form of dementia and biomarkers are essential to help in the diagnosis of this disease. Image techniques and cerebrospinal fluid (CSF) biomarkers are limited in their use because they are expensive or invasive. Thus, the search for blood-borne biomarkers is becoming central to the medical community. Objective: The main objective of this study is the evaluation of three serum proteins as potential biomarkers in AD patients. Methods: We recruited 27 healthy controls, 19 mild cognitive impairment patients, and 17 AD patients. Using the recent A/T/N classification we split our population into two groups (AD and control). We used ELISA kits…
Oxidative signature of cerebrospinal fluid from mild cognitive impairment and Alzheimer disease patients
2015
Abstract Background Several studies suggest that pathological changes in Alzheimer’s disease (AD) brain begin around 10–20 years before the onset of cognitive impairment. Biomarkers that can support early diagnosis and predict development of dementia would, therefore, be crucial for patient care and evaluation of drug efficacy. Although cerebrospinal fluid (CSF) levels of Aβ42, tau, and p-tau are well-established diagnostic biomarkers of AD, there is an urgent need to identify additional molecular alterations of neuronal function that can be evaluated at the systemic level. Objectives This study was focused on the analysis of oxidative stress-related modifications of the CSF proteome, from …
Therapeutic Plasmapheresis with Albumin Replacement in Alzheimer’s Disease and Chronic Progressive Multiple Sclerosis: A Review
2020
Background: Reducing the burden of beta-amyloid accumulation and toxic autoimmunity-related proteins, one of the recognized pathophysiological markers of chronic and common neurological disorders such as Alzheimer’s disease (AD) and multiple sclerosis (MS), may be a valid alternative therapy to reduce their accumulation in the brain and thus reduce the progression of these disorders. The objective of this review was to evaluate the efficacy of plasmapheresis (PP) in AD and chronic progressive MS patients (in terms of improving clinical symptoms) and to analyze its safety and protocols. Methods: Articles related to this topic and published without time limitations in the Medline, and C…
Vitamin D and Its Analogues Decrease Amyloid-β (Aβ) Formation and Increase Aβ-Degradation
2017
Alzheimer’s disease (AD) is characterized by extracellular plaques in the brain, mainly consisting of amyloid-β (Aβ), as derived from sequential cleavage of the amyloid precursor protein. Epidemiological studies suggest a tight link between hypovitaminosis of the secosteroid vitamin D and AD. Besides decreased vitamin D level in AD patients, an effect of vitamin D on Aβ-homeostasis is discussed. However, the exact underlying mechanisms remain to be elucidated and nothing is known about the potential effect of vitamin D analogues. Here we systematically investigate the effect of vitamin D and therapeutically used analogues (maxacalcitol, calcipotriol, alfacalcidol, paricalcitol, doxercalcife…