Search results for "angular resolution"

showing 10 items of 65 documents

All good things come in threes: the third image of the lensed quasar PKS1830-211

2020

Strong gravitational lensing distorts our view of sources at cosmological distances but brings invaluable constraints on the mass content of foreground objects and on the geometry and properties of the Universe. We report the detection of a third continuum source toward the strongly lensed quasar PKS1830-211 in ALMA multi-frequency observations of high dynamic range and high angular resolution. This third source is point-like and located slightly to the north of the diagonal joining the two main lensed images, A and B, 0.3 arcsec away from image B. It has a flux density that is ~140 times weaker than images A and B and a similar spectral index, compatible with synchrotron emission. We concl…

PhysicsSpectral indexCosmology and Nongalactic Astrophysics (astro-ph.CO)Einstein ring010308 nuclear & particles physicsContinuum (design consultancy)Strong gravitational lensingFOS: Physical sciencesAstronomy and AstrophysicsQuasarAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - Astrophysics of Galaxies01 natural sciencessymbols.namesakeSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)0103 physical sciencessymbolsMillimeterAngular resolution010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's law
researchProduct

Calibration of the XRT-SOLARB flight filters at the XACT facility of INAF-OAPA

2004

The X-Ray Telescope (XRT) experiment on-board the Japanese satellite SOLAR-B (launch in 2006) aimed at providing full Sun field of view at ~ 1.5" angular resolution, will be equipped with two wheels of focal-plane filters to select spectral features of X-ray emission from the Solar corona, and a front-end filter to significantly reduce the visible light contamination. We present the results of the X-ray calibrations of the XRT flight filters performed at the X-ray Astronomy Calibration and Testing (XACT) facility of INAF-OAPA. We describe the instrumental set-up, the adopted measurement technique, and present the transmission vs. energy and position measurements.

PhysicsX-ray astronomybusiness.industryAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsField of viewFilter (signal processing)law.inventionTelescopeOpticslawCalibrationAstrophysics::Solar and Stellar AstrophysicsAngular resolutionSatellitebusinessImage resolutionX-ray Astronomy Instrumentation Filters CalibrationRemote sensing
researchProduct

Calibration of the XRT-SOLARB flat mirror samples at the XACT Facility of INAF-OAPA

2004

The X-Ray Telescope (XRT) experiment on-board the Japanese satellite SOLAR-B (launch in 2006) is equipped with a modified Wolter I grazing incidence X-ray telescope (focal length 2700 mm) to image the full Sun at ~ 1.5" angular resolution onto a 2048 x 2048 back illuminated CCD focal plane detector. The X-ray telescope consisting of one single reflecting shell is coated with ion beam sputtered Iridium over a binding layer of Chromium to provide nearly 5 square centimetres effective area at 60 A. We present preliminary results of X-ray calibrations of the XRT flat mirror samples performed at the X-ray Astronomy Calibration and Testing (XACT) facility of INAF-OAPA. We describe the instrumenta…

PhysicsX-ray astronomybusiness.industryX-ray telescopelaw.inventionTelescopeOpticslawAngle of incidence (optics)CalibrationFocal lengthAngular resolutionX-ray Astronomy Instrumentation Grazing incidence optics CalibrationbusinessImage resolution
researchProduct

Development of the wide field imager for Athena

2015

The WFI (Wide Field Imager) instrument is planned to be one of two complementary focal plane cameras on ESA's next X-ray observatory Athena. It combines unprecedented survey power through its large field of view of 40 arcmin x 40 arcmin together with excellent count-rate capability (>= 1 Crab). The energy resolution of the silicon sensor is state-of-the-art in the energy band of interest from 0.2 keV to 15 keV, e.g. the full width at half maximum of a line at 6 keV will be <= 150 eV until the end of the nominal mission phase. This performance is accomplished by using DEPFET active pixel sensors with a pixel size of 130 μm x 130 μm well suited to the on-axis angular resolution of 5 arcsec of…

PhysicsX-ray detectorCMOS sensorHot and Energetic UniversePixelbusiness.industryElectronic Optical and Magnetic MaterialApplied MathematicsX-ray detectorComputer Science Applications1707 Computer Vision and Pattern Recognitionfocal plane cameraCondensed Matter PhysicX-ray astronomyFull width at half maximumCardinal pointOpticsActive pixel sensorObservatoryWFIAngular resolutionAthenaElectrical and Electronic EngineeringbusinessImage resolutionDEPFET
researchProduct

Performance of tracking stations of the underground cosmic-ray detector array EMMA

2018

Abstract The new cosmic-ray experiment EMMA operates at the depth of 75 m (50 GeV cutoff energy for vertical muons; 210 m.w.e.) in the Pyhasalmi mine, Finland. The underground infrastructure consists of a network of eleven stations equipped with multi-layer, position-sensitive detectors. EMMA is designed for cosmic-ray composition studies around the energy range of the knee, i.e., for primary particles with energies between 1 and 10 PeV. In order to yield significant new results EMMA must be able to record data in the full configuration for about three years. The key to the success of the experiment is the performance of its tracking stations. In this paper we describe the layout of EMMA an…

Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenatutkimuslaitteetHigh-energy muonsCosmic rayScintillatorTracking (particle physics)01 natural sciencesOpticscosmic rays0103 physical sciencesAngular resolutiondrift chambersUnderground experimentCosmic rays010303 astronomy & astrophysicsImage resolutionPhysicsMuonDrift chambersta114010308 nuclear & particles physicsbusiness.industryDetectorAstronomy and Astrophysicshigh-energy muonsilmaisimetunderground experimentScintillation counterPlastic scintillation detectorsHigh Energy Physics::Experimentbusinesskosminen säteilyMuon trackingmuon trackingplastic scintillation detectorsAstroparticle Physics
researchProduct

INTEGRAL/SPI ground calibration

2003

Three calibration campaigns of the spectrometer SPI have been performed before launch in order to determine the instrument characteristics, such as the effective detection area, the spectral resolution and the angular resolution. Absolute determination of the effective area has been obtained from simulations and measurements. At 1 MeV, the effective area is 65 cm^2 for a point source on the optical axis, the spectral resolution ~2.3 keV. The angular resolution is better than 2.5 deg and the source separation capability about 1 deg. Some temperature dependant parameters will require permanent in-flight calibration.

Point source[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]FOS: Physical sciencesInstrumentation ; Detectors ; Spectrographs ; Space vehicles ; Gamma rays ; ObservationsAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICAAstrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]OpticsSpectrographs0103 physical sciencesCalibrationSource separationAngular resolutionSpectral resolutionspace vehicles: instrumentsInstrumentation010303 astronomy & astrophysicsObservations:ASTRONOMÍA Y ASTROFÍSICA::Astronomía óptica [UNESCO]instrumentation: spectrographsPhysicsSpectrometer[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsbusiness.industryinstrumentation: detectorsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Astronomía ópticaGamma raysAntenna apertureAstrophysics (astro-ph)DetectorsSpace vehiclesAstronomy and AstrophysicsOptical axisSpace and Planetary Sciencebusiness:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]gamma rays: observations
researchProduct

The INTEGRAL IBIS/ISGRI System Point Spread Function and Source Location Accuracy

2003

The imager on board INTEGRAL (IBIS) presently provides the most detailed sky images ever obtained at energies above 30 keV. The telescope is based on a coded aperture imaging system which allows to obtain sky images in a large field of view 29deg x 29deg with an angular resolution of 12'. The System Point Spread Function of the telescope and its detailed characteristics are here described along with the specific analysis algorithms used to derive the accurate point-like source locations. The derived location accuracy is studied using the first in-flight calibration data on strong sources for the IBIS/ISGRI system. The dependence of the calibrated location accuracy with the signal to noise r…

Point spread functionAstrophysics::High Energy Astrophysical PhenomenaData analysisFOS: Physical sciencesImage processingField of viewAstrophysicsAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICAlaw.inventionTelescopeHigh angular resolutionSignal-to-noise ratioImage processinglawData analysis ; Image processing ; High angular resolutionAngular resolutionCoded aperture:ASTRONOMÍA Y ASTROFÍSICA::Astronomía óptica [UNESCO]Remote sensingIbisPhysicsbiologyUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Astronomía ópticaAstrophysics (astro-ph)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicsbiology.organism_classificationSpace and Planetary Science:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

A VLBI study of the wind-wind collision region in the massive multiple HD 167971

2019

Context. Colliding winds in massive binaries are able to accelerate particles up to relativistic speeds as the result of the interaction between the winds of the different stellar components. HD 167971 exhibits this phenomenon which makes it a strong radio source. Aims. We aim at characterizing the morphology of the radio emission and its dependence on the orbital motion, traced independently by near-infrared (NIR) interferometry of both the spectroscopic binary and the tertiary component comprising HD 167971. Methods. We analyze 2006 and 2016 very long baseline interferometric data at C and X bands. We complement our analysis with a geometrical model of the wind-wind collision region and a…

Radiation mechanisms: non-thermalAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBinary numberContext (language use)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesTechniques: high angular resolutionMomentum0103 physical sciencesVery-long-baseline interferometryBinaries: generalmassive [Stars]Astrophysics::Solar and Stellar AstrophysicsStars: mass-lossStars: massive010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsSpectral indexmass-loss [Stars]non-thermal [Radiation mechanisms]general [Binaries]010308 nuclear & particles physicsComputer Science::Information RetrievalAstronomy and AstrophysicsCollisionhigh angular resolution [Techniques]StarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceTechniques: interferometricPhysics::Space PhysicsOrbital motioninterferometric [Techniques]Astronomy &amp; Astrophysics
researchProduct

Jet collimation in NGC 315 and other nearby AGN

2020

Aims. The collimation of relativistic jets in galaxies is a poorly understood process. Detailed radio studies of the jet collimation region have been performed so far in few individual objects, providing important constraints for jet formation models. However, the extent of the collimation zone as well as the nature of the external medium possibly confining the jet are still debated. Methods. In this article we present a multi-frequency and multi-scale analysis of the radio galaxy NGC 315, including the use of mm-VLBI data up to 86 GHz, aimed at revealing the evolution of the jet collimation profile. We then consider results from the literature to compare the jet expansion profile in a samp…

Radio galaxyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGalaxies: jet01 natural sciencesGalaxies: individual: NGC 315Astrophysical jet0103 physical sciencesThick disk010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)010308 nuclear & particles physicsAstronomy and AstrophysicsRadiusGalaxies: ActiveGalaxyAccretion (astrophysics)Space and Planetary ScienceInstrumentation: high angular resolutionHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaSchwarzschild radius
researchProduct

Continuous Refocusing for Integral Microscopy with Fourier Plane Recording

2018

Integral or light field imaging is an attractive approach in microscopy, as it allows to capture 3D samples in just one shot and explore them later through changing the focus on particular depth planes of interest. However, it requires a compromise between spatial and angular resolution on the 2D sensor recording the microscopic images. A particular setting called Fourier Integral Microscope (FIMic) allows maximizing the spatial resolution for the cost of reducing the angular one. In this work, we propose a technique, which aims at reconstructing the continuous light field from sparse FIMic measurements, thus providing the functionality of continuous refocus on any arbitrary depth plane. Ou…

Signal processingMicroscopebusiness.industryComputer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION02 engineering and technologyIterative reconstruction113 Computer and information scienceslaw.inventionLens (optics)symbols.namesakeOpticsFourier transformShearletlawMicroscopy0202 electrical engineering electronic engineering information engineeringsymbols020201 artificial intelligence & image processingAngular resolutionbusinessImage resolutionLight field
researchProduct