Search results for "antimatter"

showing 4 items of 64 documents

New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the HIBEAM/NNBAR experiment at the European Spalla…

2021

Abstract The violation of baryon number, B , is an essential ingredient for the preferential creation of matter over antimatter needed to account for the observed baryon asymmetry in the Universe. However, such a process has yet to be experimentally observed. The HIBEAM/NNBAR program is a proposed two-stage experiment at the European Spallation Source to search for baryon number violation. The program will include high-sensitivity searches for processes that violate baryon number by one or two units: free neutron–antineutron oscillation ( n → n ̄ ) via mixing, neutron–antineutron oscillation via regeneration from a sterile neutron state ( n → [ n ′ , n ̄ ′ ] → n ̄ ), and neutron disappearan…

baryon number violation; feebly interacting particles; European Spallation Source; baryogenesisPhysics beyond the Standard ModelNuclear TheoryEXPERIMENTAL LIMITfeebly interacting particlesbaryogenesisAntineutron01 natural sciencesSubatomär fysikANTIPROTON ANNIHILATIONn: oscillationSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentsterilePhysicsMIRROR MATTERnew physicsanti-nddc:Antimatterbaryon: asymmetryproposed experimentDAMA ANNUAL MODULATIONNuclear and High Energy PhysicsParticle physicsAccelerator Physics and Instrumentation114 Physical sciencesBaryon asymmetrynuclear physics0103 physical sciencesDARK-MATTERmixingNeutronSensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]TRANSITION OPERATORS010306 general physicsbaryon number: violationactivity report010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAcceleratorfysik och instrumenteringMAJORANA NEUTRINOSsensitivitybaryon number violationBaryogenesisregenerationEuropean Spallation SourceUNIFIED PICTUREB-L SYMMETRYBaryon numberBARYON-NUMBER NONCONSERVATION
researchProduct

Leptophobic dark matter and the baryon number violation scale

2019

We discuss the possible connection between the scale for baryon number violation and the cosmological bound on the dark matter relic density. A simple gauge theory for baryon number which predicts the existence of a leptophobic cold dark matter particle candidate is investigated. In this context, the dark matter candidate is a Dirac fermion with mass defined by the new symmetry breaking scale. Using the cosmological bounds on the dark matter relic density we find the upper bound on the symmetry breaking scale around 200 TeV. The properties of the leptophobic dark matter candidate are investigated in great detail and we show the prospects to test this theory at current and future experiments…

Particle physicsCold dark mattermedia_common.quotation_subjectDark matterFOS: Physical sciencesContext (language use)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesAsymmetryPartícules (Física nuclear)High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesSymmetry breaking010306 general physicsmedia_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHigh Energy Physics - PhenomenologyDirac fermionAntimattersymbolsBaryon numberPhysical Review
researchProduct

Large numbers of cold positronium atoms created in laser-selected Rydberg states using resonant charge exchange

2016

Lasers are used to control the production of highly excited positronium atoms (Ps*). The laser light excites Cs atoms to Rydberg states that have a large cross section for resonant charge-exchange collisions with cold trapped positrons. For each trial with 30 million trapped positrons, more than 700 000 of the created Ps* have trajectories near the axis of the apparatus, and are detected using Stark ionization. This number of Ps* is 500 times higher than realized in an earlier proof-of-principle demonstration (2004 Phys. Lett. B 597 257). A second charge exchange of these near-axis Ps* with trapped antiprotons could be used to produce cold antihydrogen, and this antihydrogen production is e…

ANTIHYDROGENGeneral PhysicsAntiparticlepositronium0205 Optical Physics0307 Theoretical And Computational ChemistryPLASMASCONFINEMENTPhysics Atomic Molecular & Chemical01 natural sciences010305 fluids & plasmasPositroniumsymbols.namesake0202 Atomic Molecular Nuclear Particle And Plasma PhysicsIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsAntihydrogenpositronsPhysicsCondensed Matter::Quantum GasesScience & TechnologyPhysicsOpticsRydberg statesCondensed Matter PhysicsAtomic and Molecular Physics and Opticscharge-exchangeExcited stateAntimatterPhysical SciencesRydberg formulasymbolsAtomic physicsLepton
researchProduct

A parts-per-billion measurement of the antiproton magnetic moment

2017

The magnetic moment of the antiproton is measured at the parts-per-billion level, improving on previous measurements by a factor of about 350. Comparing the fundamental properties of normal-matter particles with their antimatter counterparts tests charge–parity–time (CPT) invariance, which is an important part of the standard model of particle physics. Many properties have been measured to the parts-per-billion level of uncertainty, but the magnetic moment of the antiproton has not. Christian Smorra and colleagues have now done so, and report that it is −2.7928473441 ± 0.0000000042 in units of the nuclear magneton. This is consistent with the magnetic moment of the proton, 2.792847350 ± 0.0…

ProtonCPT symmetry01 natural sciencesddc:070Standard ModelNuclear physicsPhysics in Generalcharge–parity–time (CPT) invariance0103 physical sciencesddc:530atomic and molecular physicsddc:510010306 general physicsNuclear magnetonPhysicsMultidisciplinaryMagnetic moment010308 nuclear & particles physicsDewey Decimal Classification::500 | Naturwissenschaften::510 | MathematikSymmetry (physics)AntiprotonAntimatterHigh Energy Physics::ExperimentDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikPräzisionsexperimente - Abteilung BlaumAntiproton Decelerator facility
researchProduct