Search results for "antiparticle"

showing 10 items of 69 documents

ATRAP antihydrogen experiments

2007

Antihydrogen (Hbar) was first produced at CERN in 1996. Over the past decade our ATRAP collaboration has made massive progress toward our goal of producing large numbers of cold Hbar atoms that will be captured in a magnetic gradient trap for precise comparison between the atomic spectra of matter and antimatter. The AD at CERN provides bunches of 3 × 107 low energy Pbars every 100 seconds. We capture and cool to 4 K, 0.1% of these in a cryogenic Penning trap. By stacking many bunches we are able to do experiments with 3 × 105 Pbars. ∼100 e+/sec from a 22Na radioactive source are captured and cooled in the trap, with 5 × 106 available experiments.We have developed 2 ways to make Hbar from t…

PhysicsAntiparticleCondensed Matter PhysicsPenning trapNuclear physicssymbols.namesakeAntiprotonLaser coolingAntimatterRydberg formulasymbolsPhysics::Atomic PhysicsAtomic physicsNeutral particleAntihydrogenphysica status solidi c
researchProduct

Centrifugal Separation of Antiprotons and Electrons

2010

Centrifugal separation of antiprotons and electrons is observed, the first such demonstration with particles that cannot be laser cooled or optically imaged. The spatial separation takes place during the electron cooling of trapped antiprotons, the only method available to produce cryogenic antiprotons for precision tests of fundamental symmetries and for cold antihydrogen studies. The centrifugal separation suggests a new approach for isolating low energy antiprotons and for producing a controlled mixture of antiprotons and electrons.

PhysicsAntiparticleGeneral Physics and AstronomyPlasmaElectronJlaw.inventionNuclear physicsAntiprotonlawAntimatterddc:550Physics::Accelerator PhysicsHigh Energy Physics::ExperimentPhysics::Atomic PhysicsAtomic physicsNuclear ExperimentAntihydrogenLeptonElectron coolingPhysical Review Letters
researchProduct

First Capture of Antiprotons in a Penning Trap: A Kiloelectronvolt Source

1986

Antiprotons from the Low Energy Antiproton Ring of CERN are slowed from 21 MeV to below 3 keV by being passed through 3 mm of material, mostly Be. While still in flight, the kiloelectronvolt antiprotons are captured in a Penning trap created by the sudden application of a 3-kV potential. Antiprotons are held for 100 s and more. Prospects are now excellent for much longer trapping times under better vacuum conditions. This demonstrates the feasibility of a greatly improved measurement of the inertial mass of the antiproton and opens the way to other intriguing experiments.

PhysicsAntiparticleLarge Hadron ColliderGeneral Physics and AstronomyParticle acceleratorPenning trapKinetic energylaw.inventionNuclear physicslawAntiprotonAntimatterKiloelectronvoltPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentPhysics::Atomic PhysicsDetectors and Experimental TechniquesAtomic physicsNuclear ExperimentPhysical Review Letters
researchProduct

Evidence for DirectCPViolation in the Measurement of the Cabbibo-Kobayashi-Maskawa AngleγwithB∓→D(*)K(*)∓Decays

2010

We report the measurement of the Cabibbo-Kobayashi-Maskawa CP-violating angle {gamma} through a Dalitz plot analysis of neutral D meson decays to K{sub S}{sup 0}{pi}{sup +}{pi}{sup -} and K{sub S}{sup 0} K{sup +}K{sup -} produced in the processes B{sup {-+}} {yields} DK{sup {-+}}, B{sup {-+}} {yields} D* K{sup {-+}} with D* {yields} D{pi}{sup 0}, D{gamma}, and B{sup {-+}} {yields} DK*{sup {-+}} with K*{sup {-+}} {yields} K{sub S}{sup 0}{pi}{sup {-+}}, using 468 million B{bar B} pairs collected by the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC. We measure {gamma} = (68 {+-} 14 {+-} 4 {+-} 3){sup o} (modulo 180{sup o}), where the first error is statistica…

PhysicsAntiparticleMeson010308 nuclear & particles physicsHadronGeneral Physics and AstronomyDalitz plot01 natural sciencesCrystallographyParticle decayTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYQuantum mechanics0103 physical sciencesD mesonCP violationB meson010306 general physicsPhysical Review Letters
researchProduct

Novel type of CPT violation for correlated Einstein-Podolsky-Rosen states of neutral mesons.

2004

We discuss modifications to the concept of an "antiparticle," induced by a breakdown of the CPT symmetry at a fundamental level, realized within an extended class of quantum gravity models. The resulting loss of particle-antiparticle identity in the neutral-meson system induces a breaking of the Einstein-Podolsky-Rosen correlation imposed by Bose statistics. This is parametrized by a complex parameter associated with the contamination by the "wrong symmetry" state. The physical consequences are studied, and novel observables of CPT violation in phi factories are proposed.

PhysicsAntiparticleMesonCPT symmetryFísicaGeneral Physics and AstronomyObservableQuantum entanglementSymmetry (physics)symbols.namesakeTheoretical physicsQuantum mechanicssymbolsQuantum gravityHigh Energy Physics::ExperimentEPR paradoxPhysical review letters
researchProduct

Search for Muon Neutrino and Antineutrino Disappearance in MiniBooNE

2009

The MiniBooNE Collaboration reports a search for nu(mu) and nu(mu) disappearance in the Delta m(2) region of 0.5-40 eV(2). These measurements are important for constraining models with extra types of neutrinos, extra dimensions, and CPT violation. Fits to the shape of the nu(mu) and nu(mu) energy spectra reveal no evidence for disappearance at the 90% confidence level (C.L.) in either mode. The test of nu(mu) disappearance probes a region below Delta m(2)=40 eV(2) never explored before.

PhysicsAntiparticleParticle physicsGeneral Physics and AstronomyFOS: Physical sciencesElementary particleHigh Energy Physics - ExperimentMiniBooNEMassless particleNuclear physicsHigh Energy Physics - Experiment (hep-ex)AntimatterNeutrinoEnergy (signal processing)Lepton
researchProduct

Mixing and Decay of Neutral Mesons

2003

Neutral mesons with characteristic quantum numbers, such as the strangeness S, charm C, and beauty B, have the particular property that they can mix with their antiparticles, which carry an opposite-sign quantum number which is described in this chapter.

PhysicsAntiparticleParticle physicsMesonNuclear TheoryHigh Energy Physics::PhenomenologyHigh Energy Physics::ExperimentCharm (quantum number)StrangenessNuclear ExperimentQuantum numberMixing (physics)
researchProduct

High-precision comparison of the antiproton-to-proton charge-to-mass ratio

2015

Invariance under the charge, parity, time-reversal (CPT) transformation$^{1}$ is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry—that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime—although it is model dependent$^{2}$. A number of high-precision CPT and Lorentz invariance tests—using a co-magnetometer, a torsion pendulum and a maser, among others—have been performed$^{3}$, but only a few direct high-precision CPT tests …

PhysicsAntiparticleParticle physicsMultidisciplinaryCPT symmetryLorentz transformationLorentz covarianceBaryonsymbols.namesakeStandard-Model ExtensionAntiprotonQuantum mechanicsAntimattersymbolsPräzisionsexperimente - Abteilung BlaumParticle Physics - Experiment
researchProduct

GHOSTLY BEACONS OF NEW PHYSICS

2013

The article discusses the elementary particle of the neutrino, with information on research regarding its fundamental properties and how it differs from other particles. Topics include the connection between neutrinos and their antiparticles, the observation of the particles' activity during nuclear beta decay and their interactions, and the possible implications that an asymmetric relationship between neutrinos and their antimatter would suggest regarding the composition of the universe with a majority of matter.

PhysicsAntiparticleParticle physicsMultidisciplinaryPhysics beyond the Standard ModelAntimatterHigh Energy Physics::ExperimentElementary particleGeneral MedicineNeutrino
researchProduct

RADIATION OF THE INNER HORIZON OF THE REISSNER–NORDSTRÖM BLACK HOLE

2005

Despite of over thirty years of research of the black hole thermodynamics our understanding of the possible role played by the inner horizons of Reissner-Nordstr\"om and Kerr-Newman black holes in black hole thermodynamics is still somewhat incomplete: There are derivations which imply that the temperature of the inner horizon is negative and it is not quite clear what this means. Motivated by this problem we perform a detailed analysis of the radiation emitted by the inner horizon of the Reissner-Nordstr\"om black hole. As a result we find that in a maximally extended Reissner-Nordstr\"om spacetime virtual particle-antiparticle pairs are created at the inner horizon of the Reissner-Nordstr…

PhysicsAntiparticleSpacetimeAstrophysics::High Energy Astrophysical PhenomenaWhite holeHorizonAstronomy and AstrophysicsAstrophysicsGeneral Relativity and Quantum CosmologyBlack holeGeneral Relativity and Quantum CosmologySingularitySpace and Planetary ScienceNegative energyBlack hole thermodynamicsMathematical PhysicsInternational Journal of Modern Physics D
researchProduct