Search results for "any"

showing 10 items of 7877 documents

Molecular phylogeny and forms of photosynthesis in tribe Salsoleae (Chenopodiaceae).

2016

Evolution of C3–C4 intermediate and C4 lineages are resolved in Salsoleae (Chenopodiaceae), and a model for structural and biochemical changes for the evolution of the Salsoloid form of C4 is considered.

0106 biological sciences0301 basic medicineRecurrent evolutionPhysiologyBlotting WesternPlant ScienceChenopodiaceaewestern blotsPhotosynthesis01 natural sciences03 medical and health sciencesMicroscopy Electron TransmissionBotanyPhotosynthesisChenopodiaceaeCladePhylogenyCarbon IsotopesbiologyPhylogenetic treeC2 pathway15. Life on landCarbon Dioxidebiology.organism_classificationGlycine Dehydrogenase (Decarboxylating)CO2 compensation pointPhenotypePlant Leaves030104 developmental biologyCompensation pointC3–C4 intermediatesMolecular phylogeneticsTEMleaf anatomyAncestral character state reconstruction010606 plant biology & botanyResearch PaperJournal of experimental botany
researchProduct

Characterization and purification of a bacterial chlorogenic acid esterase detected during the extraction of chlorogenic acid from arbuscular mycorrh…

2016

International audience; A Gram-negative bacterium able to grow using chlorogenic acid (5-caffeoylquinic acid) as sole carbon source has been isolated from the roots of tomato plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. An intracellular esterase exhibiting very high affinity (K-m = 2 mu M) for chlorogenic acid has been extracted and purified by FPLC from the chlorogenate-grown cultures of this bacterium. The molecular mass of the purified esterase determined by SDS-PAGE was 61 kDa and its isoelectric point determined by chromatofocusing was 7.75. The esterase hydrolysed chlorogenic acid analogues (caffeoylshikimate, and the 4- and 3-caffeoylquinic acid i…

0106 biological sciences0301 basic medicineRhizophagus irregularisCoumaric AcidsPhysiologyRoot-associated bacteria[SDV]Life Sciences [q-bio]Arbuscular mycorrhizal fungiPlant ScienceBiologyCoumaric acidRoot exudates01 natural sciencesEsterasePlant RootsProtocatechuic acidSubstrate SpecificityFerulic acid03 medical and health scienceschemistry.chemical_compoundHydrolysisChlorogenic acidBacterial ProteinsSolanum lycopersicumMycorrhizaeGeneticsMethyl caffeate[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyBacteriaEthanolMethanolChlorogenic acidbiology.organism_classification6. Clean waterChlorogenase030104 developmental biologychemistryBiochemistry[SDE]Environmental SciencesCarboxylic Ester Hydrolases010606 plant biology & botany
researchProduct

Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are involved in both suga…

2016

SPE IPM INRA UB CT1; International audience; Arbuscular mycorrhizal (AM) fungi are associated with about 80% of land plants. AM fungi provide inorganic nutrients to plants and in return up to 20% of the plant-fixed CO2 is transferred to the fungal symbionts. Since AM fungi are obligate biotrophs, unraveling how sugars are provided to the fungus partner is a key for understanding the functioning of the symbiosis. In this study, we identified two new monosaccharide transporters from Rhizophagus irregularis (RiMST5 and RiMST6) that we characterized as functional high affinity monosaccharide transporters. RiMST6 was characterized as a glucose specific, high affinity H(+) co-transporter. We prov…

0106 biological sciences0301 basic medicineRhizophagus irregularisLightPhysiology[SDV]Life Sciences [q-bio]Plant Sciencearbuscular mycorrhizal fungus01 natural sciencesrhizophagus irregularisGlomeromycotaSoilGene Expression Regulation PlantMycorrhizaeMedicagoPhylogeny2. Zero hungerMutualism (biology)Fungal proteinReverse Transcriptase Polymerase Chain Reactionglucose specificMonosaccharidesfood and beverageshigh affinity H+ co-transporterhigh affinity transporterArbuscular mycorrhizaBiochemistry[SDE]Environmental SciencesFungusSaccharomyces cerevisiaeBiologyFungal Proteins03 medical and health sciencesSymbiosisStress PhysiologicalBotanyGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyRNA MessengerGlomeromycotaObligateCell MembraneGenetic Complementation TestfungiMST5MST6Membrane Transport Proteins15. Life on landmonosaccharide transporterbiology.organism_classification030104 developmental biologyGlucose010606 plant biology & botany
researchProduct

Transcriptome analysis of the Populus trichocarpa–Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under N…

2017

Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, memb…

0106 biological sciences0301 basic medicineRhizophagus irregularisMICROBE INTERACTIONSPhysiologyarbuscule[SDV]Life Sciences [q-bio]racine finePlant Science01 natural sciencesnitrogenTranscriptomeGene Expression Regulation PlantMycorrhizaeLOTUS-JAPONICUSGLOMUS-INTRARADICESPlant ProteinsGENE-EXPRESSION2. Zero hungerazotePHOSPHATE TRANSPORTERAMMONIUM TRANSPORTERSorgan transplantationGeneral Medicinefood shortageMedicago truncatulaArbuscular mycorrhizasymbiose mycorhiziennePopulusfamineEnergy sourceARBUSCULAR MYCORRHIZABiologySULFUR STARVATION03 medical and health sciencesPHOSPHORUS ACQUISITIONSymbiosistransport de nutrimentsBotanySymbiosisGene Expression Profilingblack cottonwoodCell Biologybiology.organism_classificationMEDICAGO-TRUNCATULATransplantationpopulus trichocarpa030104 developmental biologyMembrane biogenesis010606 plant biology & botanytransplantation
researchProduct

Arbuscular mycorrhizal symbiosis mitigates the negative effects of salinity on durum wheat

2017

Arbuscular mycorrhizal (AM) symbiosis is generally considered to be effective in ameliorating the plant tolerance to salt stress. Unfortunately, the comprehension of the mechanisms implicated in salinity stress alleviation by AM symbiosis is far from being complete. Thus, an experiment was performed by growing durum wheat (Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM symbiosis on both the plant growth and the regulation of a number of genes related to salt stress and nutrient uptake. Durum wheat plants were grown outdoors in pots in absence or in presence of salt stress and with or without AM fungi inoculation. The inoculum consisted of a mixture…

0106 biological sciences0301 basic medicineRhizophagus irregularisSalinityLeavesGene Expressionlcsh:MedicinePlant SciencePlant RootsPolymerase Chain ReactionPhysical Chemistry01 natural sciencesNutrientMycorrhizaePlant Resistance to Abiotic Stresslcsh:ScienceTriticumBiomass (ecology)MultidisciplinaryEcologyPlant Anatomyfood and beveragesSalt TolerancePlantsSettore AGR/02 - Agronomia E Coltivazioni ErbaceeChemistryPlant PhysiologyPhysical SciencesWheatSymbiosiResearch ArticleBiology03 medical and health sciencesSymbiosisSettore AGR/07 - Genetica AgrariaPlant-Environment InteractionsBotanyGeneticsPlant DefensesGene RegulationGrassesSymbiosisBiochemistry Genetics and Molecular Biology (all)InoculationGene Expression ProfilingPlant EcologyEcology and Environmental Scienceslcsh:RfungiOrganismsFungiBiology and Life SciencesPlant RootPlant Pathologybiology.organism_classificationSporeSalinitySpecies Interactions030104 developmental biologyAgricultural and Biological Sciences (all)Chemical PropertiesArbuscular mycorrhizal symbiosislcsh:QSalt-Tolerance010606 plant biology & botanyPLOS ONE
researchProduct

In situ Phenotyping of Grapevine Root System Architecture by 2D or 3D Imaging: Advantages and Limits of Three Cultivation Methods

2021

International audience; The root system plays an essential role in the development and physiology of the plant, as well as in its response to various stresses. However, it is often insufficiently studied, mainly because it is difficult to visualize. For grapevine, a plant of major economic interest, there is a growing need to study the root system, in particular to assess its resistance to biotic and abiotic stresses, understand the decline that may affect it, and identify new ecofriendly production systems. In this context, we have evaluated and compared three distinct growing methods (hydroponics, plane, and cylindric rhizotrons) in order to describe relevant architectural root traits of …

0106 biological sciences0301 basic medicineRoot (linguistics)phenotypingContext (language use)Root systemPlant ScienceBiologyrhizotron01 natural sciencesSkeletonizationSB1-111003 medical and health sciencesCutting[SDV.SA.STA]Life Sciences [q-bio]/Agricultural sciences/Sciences and technics of agricultureMethods2. Zero hungerroot system architectureNeutron tomographyRhizotronPlant culture[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]15. Life on landHydroponicsgrapevine2D/3D imaging030104 developmental biologyroot traitsneutron tomographyBiological system010606 plant biology & botanyFrontiers in Plant Science
researchProduct

Expression properties exhibit correlated patterns with the fate of duplicated genes, their divergence, and transcriptional plasticity in Saccharomyco…

2017

Gene duplication is an important source of novelties and genome complexity. What genes are preserved as duplicated through long evolutionary times can shape the evolution of innovations. Identifying factors that influence gene duplicability is therefore an important aim in evolutionary biology. Here, we show that in the yeast Saccharomyces cerevisiae the levels of gene expression correlate with gene duplicability, its divergence, and transcriptional plasticity. Genes that were highly expressed before duplication are more likely to be preserved as duplicates for longer evolutionary times and wider phylogenetic ranges than genes that were lowly expressed. Duplicates with higher expression lev…

0106 biological sciences0301 basic medicineSaccharomyces cerevisiae ProteinsGene duplicationDuplicabilityPlant Biology & BotanySaccharomyces cerevisiaeSaccharomyces cerevisiae01 natural sciencesDivergenceEvolution Molecular03 medical and health sciencesGenes DuplicateGene Expression Regulation FungalGene expressionGene duplicationGeneticsSelection GeneticSaccharomycotinaPromoter Regions GeneticMolecular BiologyGenePhylogenybiologyPhylogenetic treeGenetic VariationPromoterGeneral MedicineFull Papersbiology.organism_classification030104 developmental biologyEvolutionary biologyTranscriptional plasticityGene expressionGenome Fungal010606 plant biology & botany
researchProduct

C3cotyledons are followed by C4leaves: intra-individual transcriptome analysis ofSalsola soda(Chenopodiaceae)

2016

The genome of Salsola soda allows a transition from C3 to C4 photosynthesis. A developmental transcriptome series revealed novel genes showing expression patterns similar to those encoding C4 proteins.

0106 biological sciences0301 basic medicineSalsolaC4 photosynthesisfood.ingredientSalsolaPhysiologyPlant ScienceChenopodiaceaecotyledonBiology01 natural sciences03 medical and health sciencesfoodRNA seqBotanyPhotosynthesisChenopodiaceaedevelopmentSalsola sodaCarbon IsotopesleafCaryophyllalesGene Expression Profilingfood and beveragesbiology.organism_classificationCaryophyllalesPlant Leaves030104 developmental biologyMRNA SequencingSeedlingTranscriptomePhosphoenolpyruvate carboxylaseCotyledonResearch Paper010606 plant biology & botanyJournal of Experimental Botany
researchProduct

Unraveling Salt Tolerance in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns

2017

[EN] We have performed an extensive study on the responses to salt stress in four related Limonium halophytes with different geographic distribution patterns, during seed germination and early vegetative growth. The aims of the work were twofold: to establish the basis for the different chorology of these species, and to identify relevant mechanisms of salt tolerance dependent on the control of ion transport and osmolyte accumulation. Seeds were germinated in vitro, in the presence of increasing NaCl concentrations, and subjected to ¿recovery of germination¿ tests; germination percentages and velocity were determined to establish the relative tolerance and competitiveness of the four Limoni…

0106 biological sciences0301 basic medicineSalt marshVegetative reproductionLimoniumSalt stressBOTANICAPlant ScienceBiologylcsh:Plant culture01 natural sciences03 medical and health sciencesHalophyteBotanyBIOQUIMICA Y BIOLOGIA MOLECULARClimate changelcsh:SB1-1110Original ResearchIon transportSalt glandgeographygeography.geographical_feature_categorySalt glandsbiology.organism_classificationSeed germinationSalinity toleranceSalinity030104 developmental biologyOsmolytesOsmolyteGerminationSalt marsh010606 plant biology & botany
researchProduct

Production of rosmarinic acid and salvianolic acid B from callus culture of Salvia miltiorrhiza with cytotoxicity towards acute lymphoblastic leukemi…

2016

Salvia miltiorrhiza (SM) Bunge is one of the widely-used Chinese medicinal herbs. In this study, the chemical constituents and anticancer potential of SM stems and leaves were examined with those of respective callus cultures. The callus culture for stem and leaf explants was initiated in modified Murashige and Skoog (MS) medium. Active constituents of respective extracts were analyzed by high performance liquid chromatography coupled with DAD and MS (HPLC-DAD-MS). Rosmarinic acid (RA) and salvianolic acid B (Sal B) were determined to be the main phenolic compounds. Quantitative analyses revealed that callus stem extracts produced higher amount of RA and Sal B (stem RA: 1.27±0.38%; stem Sal…

0106 biological sciences0301 basic medicineSalvia miltiorrhizaBiology01 natural sciencesHigh-performance liquid chromatographySalvia miltiorrhizaDepsidesAnalytical Chemistry03 medical and health scienceschemistry.chemical_compoundCytotoxicityIC50Chromatography High Pressure LiquidBenzofuransTraditional medicinePlant ExtractsRosmarinic acidfungifood and beveragesGeneral MedicinePrecursor Cell Lymphoblastic Leukemia-LymphomaIn vitroPlant Leaves030104 developmental biologyBiochemistrychemistryCinnamatesCallus010606 plant biology & botanyFood ScienceExplant cultureDrugs Chinese HerbalFood chemistry
researchProduct