Search results for "aperture"
showing 10 items of 182 documents
Design, Construction and Performance of the Detector for UFFO Burst Alert & Trigger Telescope
2013
One of the key aspects of the upcoming Ultra-Fast Flash Observatory (UFFO) pathfinder for Gamma Ray Bursts (GRBs) identification is the UFFO Burst Alert & Trigger Telescope (UBAT). The scientific propose of UBAT is to detect and locate as fast as possible the GRBs in the sky. This is achieved by using a coded mask aperture camera scheme with a wide field of view (FOV) and selecting a X-ray detector of high quantum efficiency and large detection area. This X-ray detector of high quantum efficiency and large detection area is called the UBAT detector. The UBAT detector consists of 48 × 48 Yttrium Oxyorthosilicate (YSO) scintillator crystal arrays and Multi Anode Photomultiplier Tubes (MAPMTs)…
Design and implementation of the UFFO burst alert and trigger telescope
2012
The Ultra Fast Flash Observatory pathfinder (UFFO-p) is a telescope system designed for the detection of the prompt optical/UV photons from Gamma-Ray Bursts (GRBs), and it will be launched onboard the Lomonosov spacecraft in 2012. The UFFO-p consists of two instruments: the UFFO Burst Alert and Trigger telescope (UBAT) for the detection and location of GRBs, and the Slewing Mirror Telescope (SMT) for measurement of the UV/optical afterglow. The UBAT isa coded-mask aperture X-ray camera with a wide field of view (FOV) of 1.8 sr. The detector module consists of the YSO(Yttrium Oxyorthosilicate) scintillator crystal array, a grid of 36 multi-anode photomultipliers (MAPMTs), and analog and digi…
Ultra-Fast Flash Observatory for detecting the early photons from gamma-ray bursts
2011
Gamma-ray bursts (GRBs) are the most luminous transient events with short intense flashes that have been detected in random directions in the sky once or twice per day. Their durations have been measured in seconds, especially short GRBs with duration of < 2 sec. The Ultra-Fast Flash Observatory (UFFO) space mission aims to detect the earliest moments of an explosion which presents the nature of GRBs, resulting into the enhancement of GRB mechanism understanding. The UFFO consists of a couple of wide Field-of-View (FOV) trigger telescopes, a narrow-FOV Slewing Mirror Telescope (SMT) for the fast measurement of the UV-optical photons from GRBs, and a gamma-ray monitor for energy measurement.…
Legri Operations. Detectors and Detector Stability
2001
Two years after launch (04.21.97), LEGRI is operating on Minisat-01 in a LEO orbit. The LEGRI detector plane is formed by two type of gamma-ray solid state detectors: HgI2 and CdZnTe. Detectors are embedded in a box containing the FEE and DFE electronics. This box provides an effective detector passive shielding. Detector plane is multiplexed by a Coded Aperture System located at 54 cm and a Ta Collimator with a FCFOV of 22° and 2° angular resolution. The aim of this paper is to summarize the detector behaviour in three different time scales: before launch, during the in-orbit check-out period (IOC), and after two years of routine operation in space. Main results can be summarized as follow…
The aperture for UHE tau neutrinos of the Auger fluorescence detector using a Digital Elevation Map
2005
We perform a new study of the chances of the fluorescence detector (FD) at the Pierre Auger Observatory to detect the tau leptons produced by Earth-skimming ultra high energy tau neutrinos. We present a new and more detailed evaluation of the effective aperture of the FD that considers a reliable fiducial volume for the experimental set up. In addition, we take into account the real elevation profile of the area near Auger. We find a significant increase in the number of expected events with respect to the predictions of a previous semi-analytical determination, and our results show the enhancement effect for neutrino detection from the presence of the near mountains.
Random angular coding for superresolved imaging.
2010
In this paper, we present a new approach capable of working under coherent and incoherent illumination for achieving superresolution by random coding of the object's angular information. By placing two static random masks in optically conjugate planes inside an aperture-limited imaging setup, one may obtain a transmitted image containing spatial resolution higher than the one obtained without the masks. As the most noticeable fact, the superresolution effect is obtained without imposing any restrictions either in the time domain or in the field-of-view domain but rather only in the dynamic range of the camera device. Experimental verifications for the proposed technique with incoherent illu…
Axial behaviour of Cantor ring diffractals
2003
Cantor ring diffractals describe rotationally symmetric pupils constructed from a one-dimensional polyadic Cantor set. The influence on the axial irradiance of several fractal descriptors of such pupils, including fractal dimension, number of gaps and lacunarity, are investigated. It is shown that, contrary to their transversal response, the axial behaviour of these pupils does not resemble the fractal structure of the aperture. The sensitivity of such pupils to the spherical aberration is also analysed.
Readout of the UFFO Slewing Mirror Telescope to detect UV/optical photons from Gamma-Ray Bursts
2013
The Slewing Mirror Telescope (SMT) was proposed for rapid response to prompt UV/optical photons from Gamma-Ray Bursts (GRBs). The SMT is a key component of the Ultra-Fast Flash Observatory (UFFO)-pathfinder, which will be launched aboard the Lomonosov spacecraft at the end of 2013. The SMT utilizes a motorized mirror that slews rapidly forward to its target within a second after triggering by an X-ray coded mask camera, which makes unnecessary a reorientation of the entire spacecraft. Subsequent measurement of the UV/optical is accomplished by a 10 cm aperture Ritchey-Chretien telescope and the focal plane detector of Intensified Charge-Coupled Device (ICCD). The ICCD is sensitive to UV/opt…
<title>Compact illuminators, collimators, and focusers with half-sperical input aperture</title>
1994
Inexpensive semi-point light sources completed with integral concentrators of the emitted radiation can find many applications in machine vision systems. Three designs of half- spherical input aperture dielectric concentrators optimized for small spot illumination, collimation, and point-focusing are discussed here. The designs provide conversion of radially emitted light into narrow beam of the desired profile by means of total internal reflection and refraction on specially shaped aspherical surfaces. Analytic expressions describing the surface shapes as well as raytracing results are presented.
Compact dielectric reflective elements I Half-sphere concentrators of radially emitted light
1994
Optical designs of aspheric internally reflective concentrators of divergent light emitted within a spatial angle of 2n sr are proposed and discussed. Four types of solid transparent element are considered: the divergence angle reducer, the small-spot illuminator, the point focuser, and the collimator. The output beam aperture in all cases is comparable with the light-source external dimensions. Expressions describing the profiles of beam-transforming surfaces and results from experiments with model devices are presented.