Search results for "app"
showing 10 items of 28370 documents
The convective eigenvalues of the one–dimensional p–Laplacian as p → 1
2020
Abstract This paper studies the limit behavior as p → 1 of the eigenvalue problem { − ( | u x | p − 2 u x ) x − c | u x | p − 2 u x = λ | u | p − 2 u , 0 x 1 , u ( 0 ) = u ( 1 ) = 0 . We point out that explicit expressions for both the eigenvalues λ n and associated eigenfunctions are not available (see [16] ). In spite of this hindrance, we obtain the precise values of the limits lim p → 1 + λ n . In addition, a complete description of the limit profiles of the eigenfunctions is accomplished. Moreover, the formal limit problem as p → 1 is also addressed. The results extend known features for the special case c = 0 ( [6] , [28] ).
Error identities for variational problems with obstacles
2017
Asymptotic behavior of global solutions of aerotaxis equations
2019
Abstract We study asymptotic behavior of global solutions of one-dimensional aerotaxis model proposed in Knosalla and Nadzieja (2015) [9] .
On asymptotic behavior of solutions to higher-order sublinear Emden–Fowler delay differential equations
2017
Abstract We study asymptotic behavior of solutions to a class of higher-order sublinear Emden–Fowler delay differential equations. Our theorems improve several results reported recently in the literature. Two examples are provided to illustrate the importance and advantages of new criteria.
Une structure o-minimale sans décomposition cellulaire
2008
Resume Nous construisons une extension o-minimale du corps des nombres reels qui n'admet pas la propriete de decomposition cellulaire en classe C ∞ . Pour citer cet article : O. Le Gal, J.-P. Rolin, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
F-contractions of Hardy–Rogers-type and application to multistage decision
2016
We prove fixed point theorems for F-contractions of Hardy–Rogers type involving self-mappings defined on metric spaces and ordered metric spaces. An example and an application to multistage decision processes are given to show the usability of the obtained theorems.
On two classes of finite supersoluble groups
2017
ABSTRACTLet ℨ be a complete set of Sylow subgroups of a finite group G, that is, a set composed of a Sylow p-subgroup of G for each p dividing the order of G. A subgroup H of G is called ℨ-S-semipermutable if H permutes with every Sylow p-subgroup of G in ℨ for all p∉π(H); H is said to be ℨ-S-seminormal if it is normalized by every Sylow p-subgroup of G in ℨ for all p∉π(H). The main aim of this paper is to characterize the ℨ-MS-groups, or groups G in which the maximal subgroups of every Sylow subgroup in ℨ are ℨ-S-semipermutable in G and the ℨ-MSN-groups, or groups in which the maximal subgroups of every Sylow subgroup in ℨ are ℨ-S-seminormal in G.
Symmetric and finitely symmetric polynomials on the spaces ℓ∞ and L∞[0,+∞)
2018
We consider on the space l∞ polynomials that are invariant regarding permutations of the sequence variable or regarding finite permutations. Accordingly, they are trivial or factor through c0. The analogous study, with analogous results, is carried out on L∞[0,+∞), replacing the permutations of N by measurable bijections of [0,+∞) that preserve the Lebesgue measure.
Global Lp -integrability of the derivative of a quasiconformal mapping
1988
Let f be a quasiconformal mapping of an open bounded set U in Rn into Rn . Then f′ belongs to Lp(U) for some p > n provided that f satisfies (a) U is a uniform domain and fU is a John domain or (b) f is quasisymmetric and U satisfies a metric plumpness condition.
A singular (p,q)-equation with convection and a locally defined perturbation
2021
Abstract We consider a parametric Dirichlet problem driven by the ( p , q ) -Laplacian and a reaction which is gradient dependent (convection) and the competing effects of two more terms, one a parametric singular term and a locally defined perturbation. We show that for all small values of the parameter the problem has a positive smooth solution.