Search results for "approximation"
showing 8 items of 818 documents
Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems
2020
Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind,…
Can the adaptive Metropolis algorithm collapse without the covariance lower bound?
2011
The Adaptive Metropolis (AM) algorithm is based on the symmetric random-walk Metropolis algorithm. The proposal distribution has the following time-dependent covariance matrix at step $n+1$ \[ S_n = Cov(X_1,...,X_n) + \epsilon I, \] that is, the sample covariance matrix of the history of the chain plus a (small) constant $\epsilon>0$ multiple of the identity matrix $I$. The lower bound on the eigenvalues of $S_n$ induced by the factor $\epsilon I$ is theoretically convenient, but practically cumbersome, as a good value for the parameter $\epsilon$ may not always be easy to choose. This article considers variants of the AM algorithm that do not explicitly bound the eigenvalues of $S_n$ away …
Representing compact sets of compact operators and of compact range vector measures
1987
The Complex WKB Method
2019
In this chapter we shall study the exponential growth and asymptotic expansions of exact solutions of second-order differential equations in the semi-classical limit. As an application, we establish a Bohr-Sommerfeld quantization condition for Schrodinger operators with real-analytic complex-valued potentials.
Computing the Trace
2001
So far we have been interested in the general expression for the WKB-propagation function. Now we turn our attention to the trace of that propagator, since we want to exhibit the energy eigenvalues of a given potential. From earlier discussions we know that the energy levels of a given Hamiltonian are provided by the poles of the Green’s function:
Strictly correlated electrons approach to excitation energies of dissociating molecules
2019
In this work we consider a numerically solvable model of a two-electron diatomic molecule to study a recently proposed approximation based on the density functional theory of so-called strictly correlated electrons (SCE). We map out the full two-particle wave function for a wide range of bond distances and interaction strengths and obtain analytic results for the two-particle states and eigenenergies in various limits of strong and weak interactions, and in the limit of large bond distance. We then study the so-called Hartree-exchange-correlation (Hxc) kernel of time-dependent density functional theory which is a key ingredient in calculating excitation energies. We study an approximation b…
Few-body insights of multiquark exotic hadrons
2018
In this contribution we discuss the adequate treatment of the $4-$ and $5-$body dynamics within a constituent quark framework. We stress that the variational and Born-Oppenheimer approximations give energies rather close to the exact ones, while the diquark approximation might be rather misleading. Hall-Post inequalities provide very useful lower bounds that exclude possible stable states for some mass ratios and color wave functions.
Relaxation of a weakly discontinuous functional depending on one control function
2008
The paper considers an optimal control problem of the typewhere the set M of admissible controls consists of all measurable vector‐functions h, which can take only two values h1 or h2. It is shown that the relaxation of this problem can be explicitly computed by rank‐one laminates.