Search results for "archaea"

showing 10 items of 102 documents

Anaerobic oxidation of methane in sediments of a nitrate-rich, oligo-mesotrophic boreal lake

2021

AbstractThe identity of electron acceptors in promoting anaerobic oxidation of methane (AOM) in the sediments of boreal lakes is currently unknown. Here, we studied the AOM rate of sediment slurries collected from three profundal stations of a nitrate-rich, oligo-mesotrophic, boreal lake (Lake Pääjärvi, Finland), under varying nitrate concentrations using 13C-labelling. Furthermore, vertical profiles of the sediment and porewater geochemistry, and the microbial communities (16S rRNA gene and shotgun metagenomic sequencing) were analyzed. Despite geochemical data indicating that simultaneous consumption of nitrate and methane took place at the sediment layers chosen for incubations, AOM rate…

0106 biological scienceschemistry.chemical_classification0303 health sciencesbiology010604 marine biology & hydrobiologySedimentbiology.organism_classification01 natural sciencesMethane03 medical and health scienceschemistry.chemical_compoundNitratechemistryEnvironmental chemistryAnaerobic oxidation of methaneProfundal zoneOrganic matterSulfate030304 developmental biologyArchaea
researchProduct

Influence of plant traits, soil microbial properties, and abiotic parameters on nitrogen turnover of grassland ecosystems

2016

International audience; Although it is known that multiple interactions among plant functional traits, microbial properties , and abiotic soil parameters influence the nutrient turnover, the relative contribution of each of these groups of variables is poorly understood. We manipulated grassland plant functional composition and soil nitrogen (N) availability in a multisite mesocosm experiment to quantify their relative effects on soil N turnover. Overall, root traits, arbuscular mycorrhizal colonization, denitrification potential, as well as N availability and water availability, best explained the variation in measured ecosystem properties, especially the trade-off between nutrient sequest…

0106 biological sciencesleaf traitsSoil biology[SDV]Life Sciences [q-bio]ammonia‐oxidizing archaea and bacteriawater availability010603 evolutionary biology01 natural sciencescomplex mixtures[ SDV.EE ] Life Sciences [q-bio]/Ecology environmentMesocosmnitrite reducersNutrientlcsh:QH540-549.5Ammonia-oxidizing Archaea And Bacteria ; Arbuscular Mycorrhizal Colonization ; Ecosystem Properties ; Grasslands ; Leaf Traits ; Nitrite Oxidizers ; Nitrite Reducers ; Nutrient Availability ; Root Traits ; Water AvailabilityEcosystemEcology Evolution Behavior and Systematics2. Zero hungerAbiotic component[SDV.EE]Life Sciences [q-bio]/Ecology environment[ SDE.BE ] Environmental Sciences/Biodiversity and Ecology[ SDV ] Life Sciences [q-bio]EcologyEcologySoil organic mattergrasslandsfood and beverages04 agricultural and veterinary sciences15. Life on landnitrite oxidizersammonia-oxidizing archaea and bacteriaroot traitsAgronomySoil water040103 agronomy & agriculturearbuscular mycorrhizal colonization0401 agriculture forestry and fisheriesEnvironmental scienceecosystem propertieslcsh:Ecologynutrient availabilityammonia-oxidizing archaea and bacteria;arbuscular mycorrhizal colonization;ecosystem properties;grasslands;leaf traits;nitrite oxidizers;nitrite reducers;nutrient availability;root traits;water availabilitySoil fertility[SDE.BE]Environmental Sciences/Biodiversity and Ecology
researchProduct

Did the ancient crenarchaeal viruses from the dawn of life survive exceptionally well the eons of meteorite bombardment?

2009

The viruses of Crenarchaeota are unexpectedly diverse in their morphologies, and most have no, or few, genes related to bacterial, eukaryal, euryarchaeal, or other crenarchaeal viruses. Though several different virus morphotypes have been discovered in enrichment cultures of microbial communities collected from geothermally heated environments around the world, the origins of such differences are unknown. We present a model that combines consideration of Earth's geological history, the early emergence of hyperthermophiles, and the early formation of viruses from primordial genes with the intent to explain this vast diversity of crenarchaeal viruses. Several meteorite- or flood basalt-induce…

Extinction eventArchaeal VirusesbiologyEcologyvirusesCrenarchaeotaMeteoroidsrespiratory systembiology.organism_classificationExtinction BiologicalAgricultural and Biological Sciences (miscellaneous)HyperthermophileMeteoriteSpace and Planetary ScienceCrenarchaeotaEvolutionary biologyHost-Pathogen Interactionshuman activitiesAstrobiology
researchProduct

Ligation Tunes Protein Reactivity in an Ancient Haemoglobin: Kinetic Evidence for an Allosteric Mechanism in Methanosarcina acetivorans Protoglobin

2012

Abstract: Protoglobin from Methanosarcina acetivorans (MaPgb) is a dimeric globin with peculiar structural properties such as a completely buried haem and two orthogonal tunnels connecting the distal cavity to the solvent. CO binding to and dissociation from MaPgb occur through a biphasic kinetics. We show that the heterogenous kinetics arises from binding to (and dissociation from) two tertiary conformations in ligation-dependent equilibrium. Ligation favours the species with high binding rate (and low dissociation rate). The equilibrium is shifted towards the species with low binding (and high dissociation) rates for the unliganded molecules. A quantitative model is proposed to describe t…

HEME ENVIRONMENTStereochemistrySILICA-GELSArchaeal ProteinsAllosteric regulationKineticsBiophysicslcsh:MedicinePlasma protein bindingBiochemistryDissociation (chemistry)HemoglobinsAllosteric RegulationBINDINGINTERNAL HYDROPHOBIC CAVITIESMoleculeGlobinFerrous CompoundsMethanosarcina acetivoransSettore BIO/10lcsh:ScienceBiologyT STATE HEMOGLOBINCarbon MonoxideMultidisciplinaryPhotolysisbiologyChemistryPhysicslcsh:RProteinsMethanosarcinabiology.organism_classificationRecombinant ProteinsEnzymesGlobinsKineticsOXYGEN-AFFINITYBiochemistryMethanosarcinaARABIDOPSIS-THALIANAlcsh:QGLOBIN-COUPLED SENSORSHuman medicineProtein MultimerizationLIGAND MIGRATIONNEUROGLOBINResearch ArticleProtein Binding
researchProduct

Proteome-wide comparison between the amino acid composition of domains and linkers

2018

Objective Amino acid composition is a sequence feature that has been extensively used to characterize proteomes of many species and protein families. Yet the analysis of amino acid composition of protein domains and the linkers connecting them has received less attention. Here, we perform both a comprehensive full-proteome amino acid composition analysis and a similar analysis focusing on domains and linkers, to uncover domain- or linker-specific differential amino acid usage patterns. Results The amino acid composition in the 38 proteomes studied showcase the greater variability found in archaea and bacteria species compared to eukaryotes. When focusing on domains and linkers, we describe …

Proteomics570BacteriaProteomeAmino acid compositionlcsh:Rlcsh:MedicineEukaryotaArchaea570 Life sciencesResearch Notelcsh:Biology (General)Sequence Analysis ProteinCatalytic DomainDomainsAmino Acid SequenceLinkerslcsh:Science (General)lcsh:QH301-705.5570 Biowissenschaftenlcsh:Q1-390BMC Research Notes
researchProduct

Genes and derived amino acid sequences of S-layer proteins from mesophilic, thermophilic, and extremely thermophilic methanococci

2002

Cells of methanococci are covered by a single layer of protein subunits (S-layer) in hexagonal arrangement, which are directly exposed to the environment and which cannot be stabilized by cellular components. We have isolated S-layer proteins from cells of Methanococcus vannielii ( T(opt.)=37 degrees C), Methanococcus thermolithotrophicus ( T(opt.)=65 degrees C), and Methanococcus jannaschii ( T(opt.)=85 degrees C). The primary structure of the S-layer proteins was determined by sequencing the corresponding genes. According to the predicted amino acid sequence, the molecular masses of the S-layer proteins of the different methanococci are in a small range between 59,064 and 60,547 Da. Compa…

MethanococcusArchaeal ProteinsMethanococcusMolecular Sequence DataMicrobiologySpecies SpecificityMethanococcalesAmino Acid SequencePeptide sequencechemistry.chemical_classificationSequence Homology Amino AcidbiologyThermophileTemperatureProtein primary structureGeneral Medicinebiology.organism_classificationMethanococciAmino acidchemistryBiochemistryGenes BacterialMolecular MedicineSequence AlignmentS-layerBacterial Outer Membrane ProteinsExtremophiles
researchProduct

A human CCT5 gene mutation causing distal neuropathy impairs hexadecamer assembly in an archaeal model

2014

Chaperonins mediate protein folding in a cavity formed by multisubunit rings. The human CCT has eight non-identical subunits and the His147Arg mutation in one subunit, CCT5, causes neuropathy. Knowledge is scarce on the impact of this and other mutations upon the chaperone's structure and functions. To make progress, experimental models must be developed. We used an archaeal mutant homolog and demonstrated that the His147Arg mutant has impaired oligomeric assembly, ATPase activity, and defective protein homeostasis functions. These results establish for the first time that a human chaperonin gene defect can be reproduced and studied at the molecular level with an archaeal homolog. The major…

Models MolecularProtein FoldingProtein ConformationProtein subunitMutantMolecular Sequence Datahuman CCT5 gene mutation molecular dynamics neuropathy archaeal modelSequence alignmentGene mutationBiologyArticleChaperonin03 medical and health sciences0302 clinical medicineProtein structureHumansProtein Interaction Domains and MotifsAmino Acid Sequence030304 developmental biologyGenetics0303 health sciencesMultidisciplinarySettore BIO/16 - Anatomia UmanaArchaeaSettore CHIM/08 - Chimica FarmaceuticaChaperone (protein)Mutationbiology.proteinThermodynamicsProtein foldingProtein MultimerizationSequence Alignment030217 neurology & neurosurgeryChaperonin Containing TCP-1
researchProduct

GH57 amylopullulanase from Desulfurococcus amylolyticus JCM 9188 can make highly branched cyclodextrin via its transglycosylation activity.

2018

Abstract Desulfurococcus amylolyticus is an anaerobic and hyperthermophilic crenarchaeon that can use various carbohydrates as energy sources. We found a gene encoding a glycoside hydrolase family 57 amylolytic enzymes (DApu) in a putative carbohydrate utilization gene cluster in the genome of D. amylolyticus . This gene has an open reading frame of 1,878 bp and consists of 626 amino acids with a molecular mass of 71 kDa. Recombinant DApu (rDApu) completely hydrolyzed pullulan to maltotriose by attacking α-1,6-glycosidic linkages, and was able to produce glucose and maltose from soluble starch and amylopectin. Although rDApu showed no activity toward α-cyclodextrin (CD) and β-CD, maltooctao…

0301 basic medicineGlycosylationGlycoside HydrolasesArchaeal ProteinsBioengineeringApplied Microbiology and BiotechnologyBiochemistrySubstrate Specificity03 medical and health scienceschemistry.chemical_compoundHydrolysisOpen Reading FramesGene clusterEnzyme StabilityMaltotrioseGlycoside hydrolaseCloning MolecularMaltoseGlucansCyclodextrins030102 biochemistry & molecular biologyDesulfurococcaceaePullulanMaltoseMolecular Weight030104 developmental biologychemistryBiochemistryAmylopectinEnergy sourceTrisaccharidesBiotechnologyEnzyme and microbial technology
researchProduct

Halorhabdus rudnickae sp. nov., a halophilic archaeon isolated from a salt mine borehole in Poland

2016

Two halophilic archaea, designated strains WSM-64 and WSM-66, were isolated from a sample taken from a borehole in the currently unexploited Barycz mining area belonging to the >Wieliczka> Salt Mine Company, in Poland. Strains are red pigmented and form non-motile cocci that stain Gram-negative. Strains WSM-64 and WSM-66 showed optimum growth at 40 °C, in 20% NaCl and at pH 6.5-7.5. The strains were facultative anaerobes. The major polar lipids of the two strains were phosphatidylglycerol (PG2), phosphatidylglycerol phosphate methyl ester (PGP-Me) and sulfated diglycosyl diether (S-DGD). Menaquinone MK-8 was the major respiratory quinone. The DNA G+C content of strain WSM-64 was 61.2 mol% b…

0301 basic medicineGeologic Sediments030106 microbiologyBiologyApplied Microbiology and BiotechnologyMicrobiologyGenomeDNA sequencingMicrobiology03 medical and health scienceschemistry.chemical_compoundBotanyEcology Evolution Behavior and SystematicsPhosphatidylglycerolHalobacteriaceaeStrain (chemistry)HaloarchaeaHalorhabdus rudnickae sp. novHalorhabdus16S ribosomal RNAbiology.organism_classificationHalophileBacterial Typing TechniqueschemistryPolandDNAArchaeaSystematic and Applied Microbiology
researchProduct

Genomic Encyclopedia of Bacteria and Archaea (GEBA) VI: learning from type strains

2019

Type strains of species are one of the most valuable resources in microbiology. During the last decade, the Genomic Encyclopedia of Bacteria and Archaea (GEBA) projects at the US Department of Energy Joint Genome Institute (JGI) and their collaborators have worked towards sequencing the genome of all the type strains of prokaryotic species. A new project GEBA VI extends these efforts to functional genomics, including pangenome and transcriptome sequencing and exometabolite analyses. As part of this project, investigators with interests in specific groups of prokaryotes are invited to submit samples for analysis at JGI.

0301 basic medicineMicrobiology (medical)biology030106 microbiologyPublic Health Environmental and Occupational HealthComputational biologybiology.organism_classificationApplied Microbiology and BiotechnologyMicrobiologyGenomeTranscriptome Sequencing03 medical and health sciences030104 developmental biologyType (biology)EncyclopediaFunctional genomicsBacteriaArchaeaMicrobiology Australia
researchProduct