Search results for "asm"
showing 10 items of 16598 documents
Pirkstiņrotaļas un rotaļas ar priekšmetiem 3- 4 gadus vecu bērnu griešanas prasmes sekmēšanai
2019
Kvalifikācijas darba tēma ir, “Pirkstiņrotaļas un rotaļas ar priekšmetiem 3-4 gadus vecu bērnu griešanas prasmes sekmēšanai”. Darba mērķis ir teorētiski analizēt un praktiski pētīt, kā pirkstiņrotaļu un rotaļu ar priekšmetiem pielietošana sekmē 3-4 gadus vecu bērnu griešanas prasmes. Mērķa sasniegšanai tika izvirzīti vairāki uzdevumi: 1. Analizēt pedagogu un psihologu atziņas par 3-4 gadus vecu bērnu attīstību un raksturot griešanas prasmes. 2.Analizēt pedagogu atziņas par rotaļu, pirkstiņrotaļu pētījuma kontekstā. 3.Veikt pētījumu par griešanas prasmju sekmēšanu rotaļā. Darba pirmajā daļā teorētiski tiek analizēta pedagogu un psihologu atziņas par bērna attīstības īpatnībām vidējā pirmskol…
The Greenland shark Somniosus microcephalus—Hemoglobins and ligand-binding properties
2017
A large amount of data is currently available on the adaptive mechanisms of polar bony fish hemoglobins, but structural information on those of cartilaginous species is scarce. This study presents the first characterisation of the hemoglobin system of one of the longest-living vertebrate species (392 +/- 120 years), the Arctic shark Somniosus microcephalus. Three major hemoglobins are found in its red blood cells and are made of two copies of the same a globin combined with two copies of three very similar beta subunits. The three hemoglobins show very similar oxygenation and carbonylation properties, which are unaffected by urea, a very important compound in marine elasmobranch physiology.…
Remnants of Anderson localization in prethermalization induced by white noise
2017
We study the non-equilibrium evolution of a one-dimensional quantum Ising chain with spatially disordered, time-dependent, transverse fields characterised by white noise correlation dynamics. We establish pre-thermalization in this model, showing that the quench dynamics of the on-site transverse magnetisation first approaches a metastable state unaffected by noise fluctuations, and then relaxes exponentially fast towards an infinite temperature state as a result of the noise. We also consider energy transport in the model, starting from an inhomogeneous state with two domain walls which separate regions characterised by spins with opposite transverse magnetization. We observe at intermedia…
Reinforcement learning approach to nonequilibrium quantum thermodynamics
2021
We use a reinforcement learning approach to reduce entropy production in a closed quantum system brought out of equilibrium. Our strategy makes use of an external control Hamiltonian and a policy gradient technique. Our approach bears no dependence on the quantitative tool chosen to characterize the degree of thermodynamic irreversibility induced by the dynamical process being considered, require little knowledge of the dynamics itself and does not need the tracking of the quantum state of the system during the evolution, thus embodying an experimentally non-demanding approach to the control of non-equilibrium quantum thermodynamics. We successfully apply our methods to the case of single- …
Entanglement entropy in a periodically driven quantum Ising chain
2016
We numerically study the dynamics of entanglement entropy, induced by an oscillating time periodic driving of the transverse field, h(t), of a one-dimensional quantum Ising chain. We consider several realizations of h(t), and we find a number of results in analogy with entanglement entropy dynamics induced by a sudden quantum quench. After short-time relaxation, the dynamics of entanglement entropy synchronises with h(t), displaying an oscillatory behaviour at the frequency of the driving. Synchronisation in the dynamics of entanglement entropy, is spoiled by the appearance of quasi-revivals which fade out in the thermodynamic limit, and which we interpret using a quasi-particle picture ada…
Work fluctuations in bosonic Josephson junctions
2016
We calculate the first two moments and full probability distribution of the work performed on a system of bosonic particles in a two-mode Bose-Hubbard Hamiltonian when the self-interaction term is varied instantaneously or with a finite-time ramp. In the instantaneous case, we show how the irreversible work scales differently depending on whether the system is driven to the Josephson or Fock regime of the bosonic Josephson junction. In the finite-time case, we use optimal control techniques to substantially decrease the irreversible work to negligible values. Our analysis can be implemented in present-day experiments with ultracold atoms and we show how to relate the work statistics to that…
Association between clusters of diseases and polypharmacy in hospitalized elderly patients: results from the REPOSI study.
2011
BACKGROUND: Although the association between multimorbidity and polypharmacy has been clearly documented, no study has analyzed whether or not specific combinations of diseases influence the prescription of polypharmacy in older persons. We assessed which clusters of diseases are associated with polypharmacy in acute-care elderly in-patients. METHODS: This cross-sectional study was held in 38 Italian internal medicine and geriatric wards participating in the Registro Politerapie SIMI (REPOSI) study during 2008. The study sample included 1155 in-patients aged 65 years or older. Clusters of diseases, defined as two or more co-occurring specific chronic diseases, were identified using the odds…
Non-Markovian Dynamics of a Qubit Due to Single-Photon Scattering in a Waveguide
2018
We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to discuss the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit …
Quantum-state transfer in staggered coupled-cavity arrays
2015
We consider a coupled-cavity array, where each cavity interacts with an atom under the rotating-wave approximation. For a staggered pattern of inter-cavity couplings, a pair of field normal modes each bi-localized at the two array ends arise. A rich structure of dynamical regimes can hence be addressed depending on which resonance condition between the atom and field modes is set. We show that this can be harnessed to carry out high-fidelity quantum-state transfer (QST) of photonic, atomic or polaritonic states. Moreover, by partitioning the array into coupled modules of smaller length, the QST time can be substantially shortened without significantly affecting the fidelity.
Atom-field dressed states in slow-light waveguide QED
2015
We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multi-photon dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide a both qualitative and quantitative description of the essential strong…