Search results for "asm"
showing 10 items of 16598 documents
A study of the optical effect of plasma sheath in a negative ion source using IBSIMU code
2020
A plasma sheath inside an ion source has a strong focusing effect on the formation of an ion beam from the plasma. Properties of the beam depend on the shape and location of the plasma sheath inside the source. The most accessible experimental data dependent on the plasma sheath are the beam phase space distribution. Variation of beam emittance is a reflection of the properties of the plasma sheath, with minimum emittance for the optimal shape of the plasma sheath. The location and shape of the plasma sheath are governed by complex physics and can be understood by simulations using plasma models in particle tracking codes like IBSimu. In the current study, a model of the D-Pace’s TRIUMF lic…
Design and experimental validation of a magnetic device for stem cell culture.
2020
Cell culture of bone and tendon tissues requires mechanical stimulation of the cells in order to mimic their physiological state. In the present work, a device has been conceived and developed to generate a controlled magnetic field with a homogeneous gradient in the working space. The design requirement was to maximize the magnetic flux gradient, assuring a minimum magnetizing value in a 15 mm × 15 mm working area, which highly increases the normal operating range of this sort of devices. The objective is to use the machine for two types of biological tests: magnetic irradiation of biological samples and force generation on paramagnetic particles embedded in scaffolds for cell culture. The…
Modelling of expected B, C, N and O Lyman-α line intensities emitted from W7-X plasmas and measured by means of the W7-X light impurity monitor system
2021
AbstractThe “C/O Monitor” for Wendelstein 7-X (W7-X) is a dedicated light impurity XUV spectrometer intended to measure Lyman-α transitions of hydrogen-like ions of four low-Z impurities—boron (4.9 nm), carbon (3.4 nm), nitrogen (2.5 nm) and oxygen (1.9 nm). Since the discussed diagnostic will deliver continuous information about the line intensities, it is crucial to understand the origin of the obtained signals with respect to the experimental plasma conditions (electron temperature and density). This, however, might be difficult because of the broad acceptance angle of the spectrometer and irregular shape of the plasma edge or SOL where the radiation is expected to mostly come from, depe…
Formation of dislocations and hardening of LiF under high-dose irradiation with 5–21 MeV 12C ions
2017
R. Zabels, I. Manika, J. Maniks, and R.Grants acknowledge the national project IMIS2, and A. Dauletbekova, M. Baizhumanov, and M. Zdorovets the Ministry of Education and Science of the Republic of Kazakhstan for the financial support.
High-Power Multicarrier Generation for RF Breakdown Testing
2017
Testing of satellite components for high RF power breakdown effects, such as multipactor and corona or passive-intermodulation, is a topic of growing interest in the aerospaceindustry. Switching fromthe classical single carrier approach to the more realisticmulticarrier scenario is very challenging from the experimental point of view. Themulticarrier signals, amplifiedby several RF power amplifiers, need to have controlled phase, amplitude, and frequency in each carrier. Fine tuning of the signal generator phases is required in order to compensate the phase drift occurring in the active elements of the test bed. This paper presents an efficient and low-cost technique to generate multicarrie…
High-frequency electrodeless lamps in argon–mercury mixtures
2005
In this paper, numerical and experimental investigations of high-frequency (HF) electrodeless lamps in argon–mercury mixtures are performed. The intensities of the mercury spectral lines having wavelengths λ = 404.66, 435.83, 546.07 nm (7 3S1–6 3P0,1,2) and the resonance line λ = 253.7 nm (6 3 P1–6 1S0) are measured at a wide range of mercury pressures, varying the HF generator current and argon filling pressure. A stationary self-consistent model of HF electrodeless discharge lamp is developed including kinetics of the excited mercury and argon atomic states. Based on the developed model, the radiation characteristics of the discharge plasma are calculated. Numerical simulation of the line…
First experiments on applying the gasdynamic ECR ion source for negative hydrogen ion production
2017
This article has no abstract. peerReviewed
Injected 1+ ion beam as a diagnostics tool of charge breeder ECR ion source plasmas
2015
International audience; Charge breeder electron cyclotron resonance ion sources (CB-ECRIS) are used as 1+ →n+ charge multiplication devices of post-accelerated radioactive ion beams. The charge breeding process involves thermalization of the injected 1+ ions with the plasma ions in ion–ion collisions, subsequent ionization by electron impact and extraction of the n+ ions. Charge breeding experiments of 85Rb and 133Cs ion beams with the 14.5 GHz PHOENIX CB-ECRIS operating with oxygen gas demonstrate the plasma diagnostics capabilities of the 1+ injection method. Two populations can be distinguished in the m/q-spectrum of the extracted ion beams, the low (1+ and 2+) charge states repres…
Ionization efficiency studies with charge breeder and conventional electron cyclotron resonance ion source
2013
Radioactive Ion Beams play an increasingly important role in several European research facility programs such as SPES, SPIRAL1 Upgrade, and SPIRAL2, but even more for those such as EURISOL. Although remarkable advances of ECRIS charge breeders (CBs) have been achieved, further studies are needed to gain insight on the physics of the charge breeding process. The fundamental plasma processes of charge breeders are studied in the frame of the European collaboration project, EMILIE, for optimizing the charge breeding. Important information on the charge breeding can be obtained by conducting similar experiments using the gas mixing and 2-frequency heating techniques with a conventional JYFL 14 …
Spark Plasma Sintering à partir de poudres mécaniquement activées : compréhension des transitions de phase au cours d'un frittage réactif
2007
International audience; À " basse température " (entre 400 et 600 ◦C), l'oxydation de MoSi2 entraîne sa désintégration en poudre (phénomène de " peste "). De récents travaux ont montré que l'utilisation de MoSi2 dense et nano-organisé permettrait de ralentir ce phénomène de " peste ". Le défi de produire des matériaux denses et nano-organisés peut être relevé par le frittage " flash " réactif sous champ électrique à partir des poudres mécaniquement activées (Mechanically-Activated Spark Plasma Sintering, MASPS). Le contrôle de la composition et de la microstructure du composé intermétallique MoSi2 nécessite de déterminer les paramètres du frittage SPS (température, rampe de montée en tempér…