Search results for "assay"

showing 10 items of 2241 documents

Hyperosmolarity and Benzalkonium Chloride Differently Stimulate Inflammatory Markers in Conjunctiva-Derived Epithelial Cells in vitro

2017

Tear hyperosmolarity is known to cause ocular surface inflammation in dry eye syndrome. Benzalkonium chloride (BAK), an eyedrop preservative, is known to induce dry eye in long-term-treated patients. Analyzing the modulation of the proinflammatory potential of hyperosmolarity in the presence of BAK on the conjunctiva could give new insights into the effect of this preservative on the disease. In a hyperosmolar model on a conjunctiva-derived cell line, and in the presence of BAK, we evaluated key inflammatory markers [CCL2, IL-8, IL-6, macrophage migration inhibitory factor (MIF) and intercellular adhesion molecule (ICAM)-1] as well as the osmoprotectant element nuclear factor of activated T…

0301 basic medicineConjunctivaCell Survival[SDV]Life Sciences [q-bio]Enzyme-Linked Immunosorbent AssayInflammationPharmacologyCell LineProinflammatory cytokine03 medical and health sciencesCellular and Molecular NeuroscienceBenzalkonium chloride0302 clinical medicineNFAT5medicineHumansChemokine CCL2ComputingMilieux_MISCELLANEOUSInterleukin-6ChemistryInterleukin-8Osmolar ConcentrationPreservatives PharmaceuticalEpithelial CellsNFATGeneral MedicineAnatomyConjunctivitisIntercellular Adhesion Molecule-1Intercellular adhesion moleculeSensory Systems[SDV] Life Sciences [q-bio]Ophthalmology030104 developmental biologymedicine.anatomical_structure030221 ophthalmology & optometryMacrophage migration inhibitory factorbiological phenomena cell phenomena and immunitymedicine.symptomBenzalkonium CompoundsConjunctivaBiomarkersmedicine.drug
researchProduct

2020

Hsp70 proteins and their Hsp40 co-chaperones are essential components of cellular chaperone networks in both prokaryotes and eukaryotes. Here, we performed a genetic analysis to define the protein domains required for the key functions of the major Hsp40/DnaJ protein Sll0897 of the cyanobacterium Synechocystis sp. PCC6803. The expression of the N-terminally located J- and G/F-domains is essential and sufficient for the proteins' fundamental in vivo functions, whereas the presence of the full-length protein, containing the C-terminal substrate-binding domains, is crucial under stress conditions.

0301 basic medicineCyanobacteriabiologyChemistryProtein domainSynechocystisbiology.organism_classificationDNAJ ProteinGenetic analysisGeneral Biochemistry Genetics and Molecular BiologyHsp70Cell biology03 medical and health sciences030104 developmental biology0302 clinical medicine030220 oncology & carcinogenesisChaperone (protein)biology.proteinViability assayFEBS Open Bio
researchProduct

Tumor- and cytokine-primed human natural killer cells exhibit distinct phenotypic and transcriptional signatures.

2019

An emerging cellular immunotherapy for cancer is based on the cytolytic activity of natural killer (NK) cells against a wide range of tumors. Although in vitro activation, or "priming," of NK cells by exposure to pro-inflammatory cytokines, such as interleukin (IL)-2, has been extensively studied, the biological consequences of NK cell activation in response to target cell interactions have not been thoroughly characterized. We investigated the consequences of co-incubation with K562, CTV-1, Daudi RPMI-8226, and MCF-7 tumor cell lines on the phenotype, cytokine expression profile, and transcriptome of human NK cells. We observe the downregulation of several activation receptors including CD…

0301 basic medicineCytotoxicity ImmunologicPhysiologymedicine.medical_treatmentCytotoxicityGene ExpressionNK cellsLymphocyte ActivationToxicologyPathology and Laboratory MedicineMolecular biology assays and analysis techniquesChemokine receptor0302 clinical medicineNeoplasmsImmune PhysiologyCellular typesGene Regulatory NetworksIL-2 receptorReceptorInnate Immune SystemMultidisciplinaryNucleic acid analysisQImmune cellsRRNA analysisKiller Cells NaturalCytokinePhenotype030220 oncology & carcinogenesisMCF-7 CellsMedicineCytokinesWhite blood cellsTumor necrosis factor alphaImmunotherapyInflammation MediatorsResearch ArticleCell signalingCell biologyBlood cellsScienceImmunologyCD16BiologyResearch and Analysis Methods03 medical and health sciencesExtraction techniquesCell Line TumormedicineGeneticsHumansMolecular Biology TechniquesMolecular BiologySecretionMedicine and health sciencesBiology and life sciencesMolecular DevelopmentNKG2DRNA extraction030104 developmental biologyAnimal cellsImmune SystemCancer researchK562 CellsTranscriptomePhysiological ProcessesDevelopmental BiologyCloningPloS one
researchProduct

Oxidative damage and disturbance of antioxidant capacity by zearalenone and its metabolites in human cells.

2017

Mycotoxin contamination of foods and feeds represent a serious problem worldwide. Zearalenone (ZEA) is a secondary metabolite produced by Fusarium species. This study explores oxidative cellular damage and intracellular defense mechanisms (enzymatic and non-enzymatic) in the hepatoma cell line HepG2 after exposure to ZEA and its metabolites (α-zearalenol, α-ZOL; β-zearalenol, β-ZOL). Our results demonstrated that HepG2 cells exposed to ZEA, α-ZOL or β-ZOL at different concentrations (0, 6.25, 12.5 and 25μM) showed: (i) elevated ROS levels (1.5- to 7-fold) based on the formation of the highly fluorescent 2',7'-dichlorofluorescein (DCF), (ii) increased DNA damage measured by the comet assay (…

0301 basic medicineDNA damage010501 environmental sciencesSecondary metaboliteToxicologymedicine.disease_cause01 natural sciencesAntioxidantsSuperoxide dismutase03 medical and health scienceschemistry.chemical_compoundDichlorofluoresceinmedicineHumans0105 earth and related environmental sciencesbiologySuperoxide Dismutasefood and beveragesGeneral MedicineGlutathioneHep G2 CellsMycotoxinsCatalaseGlutathioneComet assayOxidative Stress030104 developmental biologychemistryBiochemistryCatalasebiology.proteinta1181ZearalenoneComet AssayReactive Oxygen SpeciesOxidative stressmedicine.drugDNA DamageToxicology in vitro : an international journal published in association with BIBRA
researchProduct

Anisakis pegreffii (Nematoda: Anisakidae) products modulate oxidative stress and apoptosis-related biomarkers in human cell lines

2016

Background In countries with elevated prevalence of zoonotic anisakiasis and high awareness of this parasitosis, a considerable number of cases that associate Anisakis sp. (Nematoda, Anisakidae) and different bowel carcinomas have been described. Although neoplasia and embedded larvae were observed sharing the common site affected by chronic inflammation, no association between the nematode and malignancy were directly proved. Similarly, no data are available about the effect of secretory and excretory products of infecting larvae at the host’s cellular level, except in respect to allergenic interaction. Methods To test the mechanisms by which human non-immune cells respond to the larvae, w…

0301 basic medicineDNA damageCell SurvivalApoptosismedicine.disease_causeAnisakisFibroblast cell lines HS-68lcsh:Infectious and parasitic diseasesCell Line03 medical and health sciences0302 clinical medicineSettore AGR/20 - ZoocolturemedicineAnisakis pegreffii ; Apoptosis ; Fibroblast cell lines HS-68 ; Inflammation ; Oxidative stressAnimalsHumanslcsh:RC109-216Viability assayAnisakis pegreffii Apoptosis Fibroblast cell lines HS-68 Inflammation Oxidative stressSettore BIO/06 - Anatomia Comparata E Citologiachemistry.chemical_classificationInflammationReactive oxygen speciesBiological ProductsbiologyKinaseCell growthResearchbiology.organism_classificationMolecular biologyAnisakisOxidative Stress030104 developmental biologyInfectious DiseaseschemistryApoptosis030220 oncology & carcinogenesisLarvaAnisakis pegreffiiImmunologyParasitologyInflammation MediatorsReactive Oxygen SpeciesOxidative stressBiomarkersParasites & Vectors
researchProduct

Modification of DNA structure by reactive nitrogen species as a result of 2-methoxyestradiol–induced neuronal nitric oxide synthase uncoupling in met…

2020

Abstract 2-methoxyestradiol (2-ME) is a physiological anticancer compound, metabolite of 17β-estradiol. Previously, our group evidenced that from mechanistic point of view one of anticancer mechanisms of action of 2-ME is specific induction and nuclear hijacking of neuronal nitric oxide synthase (nNOS), resulting in local generation of nitro-oxidative stress and finally, cancer cell death. The current study aims to establish the substantial mechanism of generation of reactive nitrogen species by 2-ME. We further achieved to identify the specific reactive nitrogen species involved in DNA-damaging mechanism of 2-ME. The study was performed using metastatic osteosarcoma 143B cells. We detected…

0301 basic medicineDNA damageClinical BiochemistryBone NeoplasmsNitric Oxide Synthase Type INitric OxideBiochemistryNitric oxide03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePeroxynitrous AcidHumansMTT assayViability assaylcsh:QH301-705.5Reactive nitrogen speciesSettore CHIM/02 - Chimica FisicaOsteosarcomalcsh:R5-920Settore BIO/16 - Anatomia UmanaOrganic ChemistryDNAReactive Nitrogen Species2-MethoxyestradiolPeroxynitrous acid030104 developmental biologychemistrylcsh:Biology (General)Settore CHIM/03 - Chimica Generale E InorganicaCancer cellBiophysicslcsh:Medicine (General)030217 neurology & neurosurgeryPeroxynitrite2 methoxyestradiol nitric oxide chemotherapyResearch PaperRedox Biology
researchProduct

Genotoxicity testing: Comparison of the γH2AX focus assay with the alkaline and neutral comet assays

2017

Genotoxicity testing relies on the quantitative measurement of adverse effects, such as chromosome aberrations, micronuclei, and mutations, resulting from primary DNA damage. Ideally, assays will detect DNA damage and cellular responses with high sensitivity, reliability, and throughput. Several novel genotoxicity assays may fulfill these requirements, including the comet assay and the more recently developed γH2AX assay. Although they are thought to be specific for genotoxicants, a systematic comparison of the assays has not yet been undertaken. In the present study, we compare the γH2AX focus assay with the alkaline and neutral versions of the comet assay, as to their sensitivities and li…

0301 basic medicineDNA damageHealth Toxicology and MutagenesisCometCHO CellsBiologymedicine.disease_causeSensitivity and SpecificityHistones03 medical and health scienceschemistry.chemical_compoundCricetulus0302 clinical medicineGeneticsmedicineAnimalsDose-Response Relationship DrugMutagenicity TestsComet tailMitomycin CMolecular biologyMethyl methanesulfonateComet assay030104 developmental biologychemistry030220 oncology & carcinogenesisMicronucleus testComet AssayGenotoxicityDNA DamageMutagensMutation Research/Genetic Toxicology and Environmental Mutagenesis
researchProduct

Inherent and toxicant-provoked reduction in DNA repair capacity: A key mechanism for personalized risk assessment, cancer prevention and intervention…

2018

Abstract Genomic investigations reveal novel evidence which indicates that genetic predisposition and inherent drug response are key factors for development of cancer and for poor response to therapy. However, mechanisms for these outcomes and interactions with environmental factors have not been well-characterized. Therefore, cancer risk, prevention, intervention and prognosis determinations have still mainly been based on population, rather than on individualized, evaluations. The objective of this review was to demonstrate that a key mechanism which contributes to the determination is inherent and/or toxicant-provoked reduction in DNA repair capacity. In addition, functional and quantita…

0301 basic medicineDNA repairCarcinogenesisPopulationDNA repairBioinformaticsRisk AssessmentHazardous Substances03 medical and health sciencesCarcinogenesis DNA methylation DNA repair microRNA Personalized medicine Precision medicine Public Health Environmental and Occupational Health0302 clinical medicineNeoplasmsMedicineAnimalsHumansEpigeneticsLymphocyteseducationeducation.field_of_studyCancer preventionDNA methylationmicroRNAbusiness.industryMechanism (biology)Precision medicineEnvironmental and Occupational HealthPublic Health Environmental and Occupational HealthComputational BiologyPrecision medicinePersonalized medicine030104 developmental biology030220 oncology & carcinogenesisDNA methylationBiological AssayPersonalized medicinePublic HealthbusinessDNA Damage
researchProduct

Fishing anti-inflammatories from known drugs: In silico repurposing, design, synthesis and biological evaluation of bisacodyl analogues

2017

Herein is described in silico repositioning, design, synthesis, biological evaluation and structure-activity relationship (SAR) of an original class of anti-inflammatory agents based on a polyaromatic pharmacophore structurally related to bisacodyl (BSL) drug used in therapeutic as laxative. We describe the potential of TOMOCOMD-CARDD methods to find out new anti-inflammatory drug-like agents from a diverse series of compounds using the total and local atom based bilinear indices as molecular descriptors. The models obtained were validated by biological studies, identifying BSL as the first anti-inflammatory lead-like using in silico repurposing from commercially available drugs. Several bi…

0301 basic medicineDrugBisacodylAnti-inflammatory databasemedia_common.quotation_subjectIn silico[CHIM.THER]Chemical Sciences/Medicinal Chemistry03 medical and health sciencesIn vivoMolecular descriptorDrug DiscoveryDiarylmethylpyridinesmedicine[CHIM.CRIS]Chemical Sciences/CristallographyBisacodylRepurposingComputingMilieux_MISCELLANEOUSmedia_commonAnti-inflammatory assayChemistry[CHIM.ORGA]Chemical Sciences/Organic chemistryGeneral MedicineCombinatorial chemistry[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]3. Good health030104 developmental biologyMechanism of actionAtom-based bilinear indicesmedicine.symptomPharmacophoreTOMOCOMD-CARDD SoftwareRepurposingmedicine.drug
researchProduct

Customised in vitro model to detect human metabolism-dependent idiosyncratic drug-induced liver injury

2017

Drug-induced liver injury (DILI) has a considerable impact on human health and is a major challenge in drug safety assessments. DILI is a frequent cause of liver injury and a leading reason for post-approval drug regulatory actions. Considerable variations in the expression levels of both cytochrome P450 (CYP) and conjugating enzymes have been described in humans, which could be responsible for increased susceptibility to DILI in some individuals. We herein explored the feasibility of the combined use of HepG2 cells co-transduced with multiple adenoviruses that encode drug-metabolising enzymes, and a high-content screening assay to evaluate metabolism-dependent drug toxicity and to identify…

0301 basic medicineDrugCYP2B6Drug-induced liver injuryHealth Toxicology and Mutagenesismedia_common.quotation_subjectPopulationDrug Evaluation PreclinicalPharmacologyToxicologyHepatotoxicity mechanismsGene Expression Regulation EnzymologicOrgan Toxicity and MechanismsAdenoviridae03 medical and health sciences0302 clinical medicineCYPToxicity TestsHumansCytochrome P450 Family 2educationmedia_commonMembrane Potential Mitochondrialeducation.field_of_studyCYP3A4biologyCytochrome P450IdiosyncrasyHep G2 CellsGeneral MedicineCYP2E1Recombinant ProteinsHigh-Throughput Screening Assays030104 developmental biology030220 oncology & carcinogenesisInactivation MetabolicToxicityCell modelbiology.proteinChemical and Drug Induced Liver InjuryReactive Oxygen SpeciesDrug metabolism
researchProduct