Search results for "astro-ph.GA"

showing 10 items of 205 documents

Sub-parsec scale imaging of Centaurus A

2010

At a distance of about 3.8 Mpc, the radio galaxy Centaurus A is the closest active galaxy. Therefore it is a key target for studying the innermost regions of active galactic nuclei (AGN). VLBI observations conducted within the framework of the TANAMI program enable us to study the central region of the Cen A jet with some of the highest linear resolutions ever achieved in an AGN. This region is the likely origin of the gamma-ray emission recently detected by the Fermi Large Area Telescope (LAT). TANAMI monitors a sample of radio and gamma-ray selected extragalactic jets south of -30 degrees declination at 8.4 GHz and 22.3 GHz with the Australian Long Baseline Array (LBA) and the transoceani…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics of Galaxies (astro-ph.GA)FOS: Physical sciencesAstrophysics - Astrophysics of GalaxiesAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The GLASS-JWST Early Release Science Program. III. Strong lensing model of Abell 2744 and its infalling regions

2023

We present a new high-precision, JWST-based, strong lensing model for the galaxy cluster Abell 2744 at $z=0.3072$. By combining the deep, high-resolution JWST imaging from the GLASS-JWST and UNCOVER programs and a Director's Discretionary Time program, with newly obtained VLT/MUSE data, we identify 32 multiple images from 11 background sources lensed by two external sub-clusters at distances of ~160" from the main cluster. The new MUSE observations enable the first spectroscopic confirmation of a multiple image system in the external clumps. Moreover, the re-analysis of the spectro-photometric archival and JWST data yields 27 additional multiple images in the main cluster. The new lens mode…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics of Galaxies (astro-ph.GA)FOS: Physical sciencesAstrophysics - Astrophysics of GalaxiesAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Relic galaxies: Where are they?

2016

The finding that massive galaxies grow with cosmic time fired the starting gun for the search of objects which could have survived up to the present day without suffering substantial changes (neither in their structures, neither in their stellar populations). Nevertheless, and despite the community efforts, up to now only one firm candidate to be considered one of these relics is known: NGC 1277. Curiously, this galaxy is located at the centre of one of the most rich near galaxy clusters: Perseus. Is its location a matter of chance? Should relic hunters focus their search on galaxy clusters? In order to reply this question, we have performed a simultaneous and analogous analysis using simul…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics of Galaxies (astro-ph.GA)FOS: Physical sciencesAstrophysics - Astrophysics of GalaxiesAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The influence of stellar objects mass distribution on their gravitational fields

2019

We study the influence of the astronomical objects masses randomness on the distribution function of their gravitational fields. Based on purely theoretical arguments and comparison with extensive data, collected from observations and numerical simulations, we have shown that while mass randomness does not alter the non-Gaussian character of the gravitational fields distribution, it changes the dependencies of mean angular momenta of galaxies and clusters on their richness. The specific form of above dependence is determined by the interplay of mass distribution character and different assumptions about cluster morphology. We trace the influence of masses distribution on the time evolution …

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics of Galaxies (astro-ph.GA)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - Astrophysics of GalaxiesAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Some observational aspects of the orientation of galaxies

2011

We investigated the sample of galaxies belonging to the Tully groups of galaxies. We analyzed the orientation of galaxies inside the group. We did not found significant deviation from isotropy both in orientation of position angles and angles $\delta_D$ and $\eta$ giving the spatial orientation of galaxy planes. Moreover we analyzed consequences of different approximation of "true shape" of galaxies and showed possible influence of this problem for investigation of spatial orientation of galaxies. Implications of the obtained results for theory of galaxy formation was discussed as well.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics of Galaxies (astro-ph.GA)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - Astrophysics of GalaxiesAstrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The large-scale environment from cosmological simulations II: The redshift evolution and distributions of baryons

2019

Following Cui et al. 2018 (hereafter Paper I) on the classification of large-scale environments (LSE) at z = 0, we push our analysis to higher redshifts and study the evolution of LSE and the baryon distributions in them. Our aim is to investigate how baryons affect the LSE as a function of redshift. In agreement with Paper I, the baryon models have negligible effect on the LSE over all investigated redshifts. We further validate the conclusion obtained in Paper I that the gas web is an unbiased tracer of total matter -- even better at high redshifts. By separating the gas mainly by temperature, we find that about 40 per cent of gas is in the so-called warm-hot intergalactic medium (WHIM). …

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics of Galaxies (astro-ph.GA)FOS: Physical scienceslarge-scale structure of UniverseAstrophysics::Cosmology and Extragalactic Astrophysicscosmology: miscellaneous[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Astrophysics of GalaxiesAstrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Limits on the Mass and Abundance of Primordial Black Holes from Quasar Gravitational Microlensing

2017

The idea that dark matter can be made of intermediate-mass primordial black holes in the $10M_\odot \lesssim M \lesssim 200M_\odot$ range has recently been reconsidered, particularly in the light of the detection of gravitational waves by the LIGO experiment. The existence of even a small fraction of dark matter in black holes should nevertheless result in noticeable quasar gravitational microlensing. Quasar microlensing is sensitive to any type of compact objects in the lens galaxy, to their abundance, and to their mass. We have analyzed optical and X-ray microlensing data from 24 gravitationally lensed quasars to estimate the abundance of compact objects in a very wide range of masses. We…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaDark matterPopulationFOS: Physical sciencesPrimordial black holeAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGravitational microlensing01 natural sciencesGeneral Relativity and Quantum Cosmology0103 physical scienceseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicseducation.field_of_study010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsQuasarAstrophysics - Astrophysics of GalaxiesGalaxyLIGOSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics::Earth and Planetary AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Radio data and synchrotron emission in consistent cosmic ray models

2011

It is well established that phenomenological two-zone diffusion models of the galactic halo can very well reproduce cosmic-ray nuclear data and the observed antiproton flux. Here, we consider lepton propagation in such models and compute the expected galactic population of electrons, as well as the diffuse synchrotron emission that results from their interaction with galactic magnetic fields. We find models in agreement not only with cosmic ray data but also with radio surveys at essentially all frequencies. Requiring such a globally consistent description strongly disfavors very large ($L\gtrsim 15$ kpc) and, even stronger, small ($L\lesssim 1$ kpc) effective diffusive halo sizes. This has…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaPopulationDark matterFOS: Physical sciencesSynchrotron radiationCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesGalactic haloHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceseducation010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicseducation.field_of_studydark matter theorycosmic ray theory; dark matter theory010308 nuclear & particles physicsAstronomy and Astrophysicscosmic ray theoryAstrophysics - Astrophysics of GalaxiesHigh Energy Physics - PhenomenologyAntiprotonAstrophysics of Galaxies (astro-ph.GA)HaloAstrophysics - Cosmology and Nongalactic AstrophysicsRadio waveJournal of Cosmology and Astroparticle Physics
researchProduct

The ALHAMBRA survey: Estimation of the clustering signal encoded in the cosmic variance

2015

[Aims]: The relative cosmic variance (σv) is a fundamental source of uncertainty in pencil-beam surveys and, as a particular case of count-in-cell statistics, can be used to estimate the bias between galaxies and their underlying dark-matter distribution. Our goal is to test the significance of the clustering information encoded in the σv measured in the ALHAMBRA survey. [Methods]: We measure the cosmic variance of several galaxy populations selected with B-band luminosity at 0.35 ≤ z< 1.05 as the intrinsic dispersion in the number density distribution derived from the 48 ALHAMBRA subfields. We compare the observational σv with the cosmic variance of the dark matter expected from the theory…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCorrelation function (astronomy)01 natural sciencesLuminosityStatistics [Galaxies]0103 physical sciencesDark matterStatistical dispersionCluster analysis010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]010308 nuclear & particles physicsAstronomy and AstrophysicsCosmic varianceAstrophysics - Astrophysics of GalaxiesGalaxyRedshiftSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Galaxies: Statistics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Radio signatures from encounters between Neutron Stars and QCD-Axion Minihalos around Primordial Black Holes

2021

Probing the QCD axion dark matter (DM) hypothesis is extremely challenging as the axion interacts very weakly with Standard Model particles. We propose a new avenue to test the QCD axion DM via transient radio signatures coming from encounters between neutron stars (NSs) and axion minihalos around primordial black holes (PBHs). We consider a general QCD axion scenario in which the PQ symmetry breaking occurs before (or during) inflation coexisting with a small fraction of DM in the form of PBHs. The PBHs will unavoidably acquire around them axion minihalos with the typical length scale of parsecs. The axion density in the minihalos may be much higher than the local DM density, and the prese…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and DetectorsMilky WayAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesPrimordial black holeAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyRadio telescopeHigh Energy Physics::TheoryHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010303 astronomy & astrophysicsAxionPhysicsQuantum chromodynamicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesGalaxyHigh Energy Physics - PhenomenologyNeutron star13. Climate actionAstrophysics of Galaxies (astro-ph.GA)Astrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct