Search results for "astro-ph.SR"

showing 10 items of 350 documents

Redshifted X-rays from the material accreting onto TW Hya: evidence of a low-latitude accretion spot

2017

High resolution spectroscopy, providing constraints on plasma motions and temperatures, is a powerful means to investigate the structure of accretion streams in CTTS. In particular, the accretion shock region, where the accreting material is heated to temperatures of a few MK as it continues its inward bulk motion, can be probed by X-ray spectroscopy. To attempt to detect for the first time the motion of this X-ray-emitting post-shock material, we searched for a Doppler shift in the deep Chandra/HETGS observation of the CTTS TW Hya. This test should unveil the nature of this X-ray emitting plasma component in CTTS, and constrain the accretion stream geometry. We searched for a Doppler shift…

AccretionTechniques: spectroscopicFOS: Physical sciencesAstrophysics01 natural sciencesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesTW HydraeX-rays: starEmission spectrumSpectroscopy010303 astronomy & astrophysicsStars: variables: T TauriSolar and Stellar Astrophysics (astro-ph.SR)PhysicsPhotosphereLine-of-sight010308 nuclear & particles physicsHerbig Ae/BeAstronomy and AstrophysicsAstronomy and AstrophysicRedshiftAccretion (astrophysics)T Tauri starAstrophysics - Solar and Stellar AstrophysicsAccretion diskSpace and Planetary ScienceStars: pre-main sequence
researchProduct

Gaia -ESO Survey: Analysis of pre-main sequence stellar spectra

2015

This paper describes the analysis of UVES and GIRAFFE spectra acquired by the Gaia-ESO Public Spectroscopic Survey in the fields of young clusters whose population includes pre-main sequence (PMS) stars. Both methods that have been extensively used in the past and new ones developed in the contest of the Gaia-ESO survey enterprise are available and used. The internal precision of these quantities is estimated by inter-comparing the results obtained by such different methods, while the accuracy is estimated by comparison with independent external data, like effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. Specific strategi…

Accuracy and precisionPopulationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstars: pre-main sequenceSurveysfundamental parameters [Stars]Astronomical spectroscopysurveysAngular diameterpre-main sequence [Stars]Astrophysics::Solar and Stellar AstrophysicsSurveydata analysis [Methods]educationSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsAstronomía y AstrofísicaPhysicseducation.field_of_studygeneral [Open clusters and associations][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Astronomy and AstrophysicsStars: fundamental parameterAstronomy and AstrophysicEffective temperatureopen clusters and associations: generalSurface gravitymethods: data analysisAccretion (astrophysics)StarsAstrophysics - Solar and Stellar AstrophysicsMethods: data analysis; Open clusters and associations: general; Stars: fundamental parameters; Stars: pre-main sequence; Surveys; Astronomy and Astrophysics; Space and Planetary ScienceSpace and Planetary Science[SDU]Sciences of the Universe [physics]open clusters and associations: general; surveys ; methods: data analysisAstrophysics::Earth and Planetary Astrophysicsstars: fundamental parametersMethods: data analysi
researchProduct

Mass Accretion Processes in Young Stellar Objects: Role of Intense Flaring Activity

2014

According to the magnetospheric accretion scenario, young low-mass stars are surrounded by circumstellar disks which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn have a significant role in removing the excess angular momentum from the star-disk system. Although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. On the other hand, strong flaring activity is a common feature of young stellar objects (YSOs). In the Sun, such events give rise to perturbations of the interplanetary medium. Similar but mo…

Angular momentumMHDStars: flareAstrophysics::High Energy Astrophysical PhenomenaYoung stellar objectFOS: Physical sciencesInterplanetary mediumAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAcoustics and UltrasonicAccretion accretion diskIntermediate polarAstrophysics::Solar and Stellar AstrophysicsX-rays: starSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsNuclear and High Energy PhysicGeneral Environmental SciencePhysicsRadiationStar formationAstronomyAccretion (astrophysics)StarsAstrophysics - Solar and Stellar Astrophysicslcsh:TA1-2040Space and Planetary ScienceStars: circumstellar matterGeneral Earth and Planetary SciencesCircumstellar dustAstrophysics::Earth and Planetary Astrophysicslcsh:Engineering (General). Civil engineering (General)Stars: pre-main-sequenceActa Polytechnica CTU Proceedings
researchProduct

A stellar flare-coronal mass ejection event revealed by X-ray plasma motions

2019

Coronal mass ejections (CMEs), often associated with flares, are the most powerful magnetic phenomena occurring on the Sun. Stars show magnetic activity levels up to 10^4 times higher, and CME effects on stellar physics and circumstellar environments are predicted to be significant. However, stellar CMEs remain observationally unexplored. Using time-resolved high-resolution X-ray spectroscopy of a stellar flare on the active star HR 9024 observed with Chandra/HETGS, we distinctly detected Doppler shifts in S XVI, Si XIV, and Mg XII lines that indicate upward and downward motions of hot plasmas (~10-25 MK) within the flaring loop, with velocity v~100-400 km/s, in agreement with a model of fl…

Angular momentumX-ray Astronomy010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaStars: flareFOS: Physical sciencesAstrophysicsKinetic energy01 natural scienceslaw.inventionSpitzer Space Telescopelaw0103 physical sciencesCoronal mass ejectionAstrophysics::Solar and Stellar AstrophysicsStars: coronae010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesLine (formation)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astronomy and AstrophysicsStarsAstrophysics - Solar and Stellar AstrophysicsStellar physicsPhysics::Space PhysicsStars: CMEAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaFlare
researchProduct

Evolutionary paths of binaries with a neutron star - I. The case of SAX J1808.4 - 3658

2018

The evolutionary status of the low mass X-ray binary SAX J1808.4-3658 is simulated by following the binary evolution of its possible progenitor system through mass transfer, starting at a period of $\sim$6.6 hr. The evolution includes angular momentum losses via magnetic braking and gravitational radiation. It also takes into account the effects of illumination of the donor by both the X-ray emission and the spin down luminosity of the pulsar. The system goes through stages of mass transfer and stages during which it is detached, where only the rotationally powered pulsar irradiates the donor. We show that the pulsar irradiation is a necessary ingredient to reach SAX J1808.4-3658 orbital pe…

Angular momentumastro-ph.SRAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesLuminosityPulsars: individual: SAX J1808.4Settore FIS/05 - Astronomia E AstrofisicaPulsarBinaries: closeMass transfer0103 physical sciencesBinaries: generalStars: low-maAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)3658 -X-rays: binarieHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HE010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsAstronomy and AstrophysicOrbital periodNeutron starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics - High Energy Astrophysical PhenomenaLow Mass
researchProduct

Oxygen depletion in dense molecular clouds: a clue to a low O2 abundance?

2011

Context: Dark cloud chemical models usually predict large amounts of O2, often above observational limits. Aims: We investigate the reason for this discrepancy from a theoretical point of view, inspired by the studies of Jenkins and Whittet on oxygen depletion. Methods: We use the gas-grain code Nautilus with an up-to-date gas-phase network to study the sensitivity of the molecular oxygen abundance to the oxygen elemental abundance. We use the rate coefficient for the reaction O + OH at 10 K recommended by the KIDA (KInetic Database for Astrochemistry) experts. Results: The updates of rate coefficients and branching ratios of the reactions of our gas-phase chemical network, especially N + C…

AstrochemistryChemical models[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Analytical chemistrychemistry.chemical_elementFOS: Physical sciencesAstrophysicsAstrophysicsKinetic energy01 natural sciencesOxygen[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesSolar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysics010304 chemical physics[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Molecular cloudAstronomy and Astrophysicsastrochemistry; ISM; abundances; ISM; molecules; ISM; individual objects; L134N; ISM; individual objects; TMC-1[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]NitrogenchemistryAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceMolecular oxygenChemical network
researchProduct

Astrophysics with the Laser Interferometer Space Antenna

2023

Full list of authors: Amaro-Seoane, Pau; Andrews, Jeff; Sedda, Manuel Arca; Askar, Abbas.; Baghi, Quentin; Balasov, Razvan; Bartos, Imre; Bavera, Simone S.; Bellovary, Jillian; Berry, Christopher P. L.; Berti, Emanuele; Bianchi, Stefano; Blecha, Laura; Blondin, Stephane; Bogdanovic, Tamara; Boissier, Samuel; Bonetti, Matteo; Bonoli, Silvia; Bortolas, Elisa; Breivik, Katelyn; Capelo, Pedro R.; Caramete, Laurentiu; Cattorini, Federico; Charisi, Maria; Chaty, Sylvain; Chen, Xian; Chruslinska, Martyna; Chua, Alvin J. K.; Church, Ross; Colpi, Monica; D'Orazio, Daniel; Danielski, Camilla; Davies, Melvyn B.; Dayal, Pratika; De Rosa, Alessandra; Derdzinski, Andrea; Destounis, Kyriakos; Dotti, Massi…

AstrofísicaACTIVE GALACTIC NUCLEICosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)Black holeAstronomyStellar remnantFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)TIDAL DISRUPTION EVENTSGeneral Relativity and Quantum CosmologyGravitational wavesMOCCA-SURVEY DATABASESettore FIS/05 - Astronomia e AstrofisicaStellar remnantsSoftware ScienceMulti-messengerGRAVITATIONAL-WAVE SOURCESInstrumentation and Methods for Astrophysics (astro-ph.IM)Extreme mass ratio in-spiralsSolar and Stellar Astrophysics (astro-ph.SR)High Energy Astrophysical Phenomena (astro-ph.HE)Black holes; Extreme mass ratio in-spirals; Gravitational waves; Multi-messenger; Stellar remnantsBlack holesData ScienceAstrophysics::Instrumentation and Methods for AstrophysicsExtreme mass ratio in-spiralAM-CVN STARSAstrophysics - Astrophysics of GalaxiesWHITE-DWARF BINARIESDOUBLE NEUTRON-STARSAstrophysics - Solar and Stellar Astrophysics[SDU]Sciences of the Universe [physics]Astrophysics of Galaxies (astro-ph.GA)AstronomiaMASSIVE BLACK-HOLEAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsX-RAY BINARIESCOMMON-ENVELOPE EVOLUTIONGravitational waveAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Are fast radio bursts the most likely electromagnetic counterpart of neutron star mergers resulting in prompt collapse?

2018

Inspiraling and merging binary neutron stars (BNSs) are important sources of both gravitational waves and coincident electromagnetic counterparts. If the BNS total mass is larger than a threshold value, a black hole ensues promptly after merger. Through a statistical study in conjunction with recent LIGO/Virgo constraints on the nuclear equation of state, we estimate that up to $\sim 25\%$ of BNS mergers may result in prompt collapse. Moreover, we find that most models of the BNS mass function we study here predict that the majority of prompt-collapse BNS mergers have $q\gtrsim 0.8$. Prompt-collapse BNS mergers with mass ratio $q \gtrsim 0.8$ may not be accompanied by detectable kilonovae o…

AstrofísicaGeneral relativityAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyLuminosity0103 physical sciences010306 general physicsAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsGravitational waveMass ratioLIGOBlack holeNeutron starAstrophysics - Solar and Stellar AstrophysicsAstronomiaAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)Physical Review D
researchProduct

X-ray emission from stellar jets by collision against high-density molecular clouds: an application to HH 248

2015

We investigate the plausibility of detecting X-ray emission from a stellar jet that impacts against a dense molecular cloud. This scenario may be usual for classical T Tauri stars with jets in dense star-forming complexes. We first model the impact of a jet against a dense cloud by 2D axisymmetric hydrodynamic simulations, exploring different configurations of the ambient environment. Then, we compare our results with XMM-Newton observations of the Herbig-Haro object HH 248, where extended X-ray emission aligned with the optical knots is detected at the edge of the nearby IC 434 cloud. Our simulations show that a jet can produce plasma with temperatures up to 10 MK, consistent with producti…

AstrofísicaHERBIGHARO OBJECTSJETS AND OUTFLOWS [ISM]Astrophysics::High Energy Astrophysical PhenomenaRotational symmetryFOS: Physical sciencesCloud computingAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsISM [X-RAYS]Space (mathematics)LuminosityHYDRODYNAMICS//purl.org/becyt/ford/1 [https]INDIVIDUAL OBJECTS (HH 248) [ISM]hydrodynamics Herbig-Haro objects ISM: individual objects: HH 248 ISM: jets and outflows X-rays: ISMAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)PhysicsJet (fluid)business.industryMolecular cloudAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]PlasmaAstronomíaT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceHerbig–Haro objectsbusiness
researchProduct

Magnetorotational supernovae: A nucleosynthetic analysis of sophisticated 3D models

2022

ABSTRACT Magnetorotational supernovae are a rare type of core-collapse supernovae where the magnetic field and rotation play a central role in the dynamics of the explosion. We present the post-processed nucleosynthesis of state-of-the-art neutrino-MHD supernova models that follow the post explosion evolution for few seconds. We find three different dynamical mechanisms to produce heavy r-process elements: (i) a prompt ejection of matter right after core bounce, (ii) neutron-rich matter that is ejected at late times due to a reconfiguration of the protoneutronstar shape, (iii) small amount of mass ejected with high entropies in the centre of the jet. We investigate total ejecta yields, incl…

AstrofísicaHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics::High Energy Astrophysical PhenomenaAstronomiaFOS: Physical sciencesAstrophysics::Solar and Stellar AstrophysicsAstronomy and AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct