Search results for "astro-ph.SR"
showing 10 items of 350 documents
Structure of Small Magnetic Elements in the Solar Atmosphere
2012
High resolution images at different wavelengths, spectrograms and magnetograms, representing different levels of the solar atmosphere obtained with Hinode have been combined to study the 3-dimensional structure of the small magnetic elements in relation to their radiance. A small magnetic element is described as example of the study.
Observations of vortex motion in the solar photosphere using HINODE-SP data
2012
In this work, we focus in the magnetic evolution of a small region as seen by Hinode-SP during the time interval of about one hour. High-cadence LOS magnetograms and velocity maps were derived, allowing the study of different small-scale processes such as the formation/disappearance of bright points accompanying the evolution of an observed convective vortical motion.
Instabilities in Interacting Binary Stars
2017
The types of instability in the interacting binary stars are reviewed. The project "Inter-Longitude Astronomy" is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of participating organizations, when informal working groups are created. Totally we studied 1900+ variable stars of different types. The characteristic timescale is from seconds to decades and (extrapolating) even more. The monitoring of the first star of our sample AM Her was initiated by Prof. V.P. Tsesevich (1907-1983). Since more than 358 ADS papers were published. Some highlights of our photometric and photo-polarimetric monitoring and math…
Supersonic Magnetic Flows in the Quiet Sun
2012
In this contribution we describe some recent observations of high-speed magnetized flows in the quiet Sun granulation. These observations were carried out with the Imaging Magnetograph eXperiment (IMaX) onboard the stratospheric balloon {\sc Sunrise}, and possess an unprecedented spatial resolution and temporal cadence. These flows were identified as highly shifted circular polarization (Stokes $V$) signals. We estimate the LOS velocity responsible for these shifts to be larger than 6 km s$^{-1}$, and therefore we refer to them as {\it supersonic magnetic flows}. The average lifetime of the detected events is 81.3 s and they occupy an average area of about 23\,000 km$^2$. Most of the events…
Minimum main sequence mass in quadratic Palatini $f(\mathcal{R})$ gravity
2019
General Relativity yields an analytical prediction of a minimum required mass of roughly $\sim 0.08-0.09 M_{\odot}$ for a star to stably burn sufficient hydrogen to fully compensate photospheric losses and, therefore, to belong to the main sequence. Those objects below this threshold (brown dwarfs) eventually cool down without any chance to stabilize their internal temperature. In this work we consider quadratic Palatini $f(\mathcal{R})$ gravity and show that the corresponding newtonian hydrostatic equilibrium equation contains a new term whose effect is to introduce a weakening/strenghtening of the gravitational interaction inside astrophysical bodies. This fact modifies the General Relati…
Simulations of the Magneto-rotational Instability in Core-Collapse Supernovae
2009
We assess the importance of the magneto-rotational instability in core-collapse supernovae by an analysis of the growth rates of unstable modes in typical post-collapse systems and by numerical simulations of simplified models. The interplay of differential rotation and thermal stratification defines different instability regimes which we confirm in our simulations. We investigate the termination of the growth of the MRI by parasitic instabilities, establish scaling laws characterising the termination amplitude, and study the long-term evolution of the saturated turbulent state.
The Solar Spectroscopy Explorer Mission
2010
The Solar Spectroscopy Explorer (SSE) concept is conceived as a scalable mission, with two to four instruments and a strong focus on coronal spectroscopy. In its core configuration it is a small strategic mission ($250-500M) built around a microcalorimeter (an imaging X-ray spectrometer) and a high spatial resolution (0.2 arcsec) EUV imager. SSE puts a strong focus on the plasma spectroscopy, balanced with high resolution imaging - providing for break-through imaging science as well as providing the necessary context for the spectroscopy suite. Even in its smallest configuration SSE provides observatory class science, with significant science contributions ranging from basic plasma and radi…
Photospheric response to EB-like event
2016
Ellerman Bombs are signatures of magnetic reconnection, which is an important physical process in the solar atmosphere. How and where they occur is a subject of debate. In this paper we analyse Sunrise/IMaX data together with 3D MHD simulations that aim to reproduce the exact scenario proposed for the formation of these features. Although the observed event seems to be more dynamic and violent than the simulated one, simulations clearly confirm the basic scenario for the production of EBs. The simulations also reveal the full complexity of the underlying process. The simulated observations show that the Fe I 525.02 nm line gives no information on the height where reconnection takes place. I…
The Close T Tauri Binary System V4046 Sgr: Rotationally Modulated X-Ray Emission from Accretion Shocks
2012
We report initial results from a quasi-simultaneous X-ray/optical observing campaign targeting V4046 Sgr, a close, synchronous-rotating classical T Tauri star (CTTS) binary in which both components are actively accreting. V4046 Sgr is a strong X-ray source, with the X-rays mainly arising from high-density (n_e ~ 10^(11-12) cm^(-3)) plasma at temperatures of 3-4 MK. Our multiwavelength campaign aims to simultaneously constrain the properties of this X-ray emitting plasma, the large scale magnetic field, and the accretion geometry. In this paper, we present key results obtained via time-resolved X-ray grating spectra, gathered in a 360 ks XMM-Newton observation that covered 2.2 system rotatio…
Study of the reflection spectrum of the accreting neutron star GX 3+1 using XMM-Newton and INTEGRAL
2015
Broad emission features of abundant chemical elements, such as Iron, are commonly seen in the X-ray spectra of accreting compact objects and their studies can provide useful information about the geometry of the accretion processes. In this work, we focus our attention on GX 3+1, a bright, persistent accreting low mass X-ray binary, classified as an atoll source. Its spectrum is well described by an accretion disc plus a stable comptonizing, optically thick corona which dominates the X-ray emission in the 0.3-20 keV energy band. In addition, four broad emission lines are found and we associate them with reflection of hard photons from the inner regions of the accretion disc where doppler an…