Search results for "astroparticle"

showing 10 items of 110 documents

International Scoping Study (ISS) for a future neutrino factory and Super-Beam facility. Detectors and flux instrumentation for future neutrino facil…

2009

Technical report by The ISS Detector Working Group; This report summarises the conclusions from the detector group of the International Scoping Study of a future Neutrino Factory and Super-Beam neutrino facility. The baseline detector options for each possible neutrino beam are defined as follows: 1. A very massive (Megaton) water Cherenkov detector is the baseline option for a sub-GeV Beta Beam and Super Beam facility. 2. There are a number of possibilities for either a Beta Beam or Super Beam (SB) medium energy facility between 1-5 GeV. These include a totally active scintillating detector (TASD), a liquid argon TPC or a water Cherenkov detector. 3. A 100 kton magnetized iron neutrino det…

Particle physicsneutrino factoryCherenkov detectorPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaBeam-line instrumentation (beam position and profile monitorsddc:500.27. Clean energy01 natural sciencesBunch length monitors)law.inventionNuclear physicsneutrinolaw0103 physical sciencesbeam-intensity monitorsneutrino oscillation[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsInstrumentationbeam-intensity monitorMathematical PhysicsdetectorsPhysicsMuon010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsDetectorFísicaBeam-intensity monitorsFIS/01 - FISICA SPERIMENTALENeutrino detectorLarge detector systems for particle and astroparticle physicBeam-line instrumentation (beam position and profile monitorbunch length monitors)Physics::Accelerator PhysicsNeutrino FactoryHigh Energy Physics::ExperimentCloud chamberNeutrinoBeam (structure)
researchProduct

Search for inelastic scattering of WIMP dark matter in XENON1T

2021

We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off $^{129}$Xe is the most sensitive probe of inelastic WIMP interactions, with a signature of a 39.6 keV de-excitation photon detected simultaneously with the nuclear recoil. Using an exposure of 0.89 tonne-years, we find no evidence of inelastic WIMP scattering with a significance of more than 2$\sigma$. A profile-likelihood ratio analysis is used to set upper limits on the cross-section of WIMP-nucleus interactions. We exclude new parameter space for WIMPs heavier than 100 GeV/c${}^2$, with the strongest upper limit of $3.3 \time…

xenon: targetPhotonPhysics::Instrumentation and DetectorsParameter space01 natural sciencesWIMP: dark matterHigh Energy Physics - Experiment; High Energy Physics - Experiment; astro-ph.COHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)XENONRecoilWIMPWIMP nucleus: cross section[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matterparameter spaceNuclear ExperimentComputingMilieux_MISCELLANEOUSnucleus: recoilPhysicsDark Matter Inelastic scattering XENON Direct Dark MatterPhysicsphotonAstrophysics::Instrumentation and Methods for AstrophysicsDirect Dark MatterWeakly interacting massive particlesastro-ph.COsignatureAstrophysics - Cosmology and Nongalactic AstrophysicsParticle physicsInelastic scatteringCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesWIMP: massAstrophysics::Cosmology and Extragalactic AstrophysicsInelastic scatteringNOPE2_2PE2_10103 physical sciencesddc:530010306 general physics010308 nuclear & particles physicsScatteringWIMP nucleus: interactionDarkmatterWIMP: interactionHigh Energy Physics::Experiment[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics and astroparticle physicsexperimental resultsPhysical Review D. Particles, Fields, Gravitation, and Cosmology
researchProduct

Charles Darwin and the Origin of Life

2009

When Charles Darwin published The Origin of Species 150 years ago he consciously avoided discussing the origin of life. However, analysis of some other texts written by Darwin, and of the correspondence he exchanged with friends and colleagues demonstrates that he took for granted the possibility of a natural emergence of the first life forms. As shown by notes from the pages he excised from his private notebooks, as early as 1837 Darwin was convinced that “the intimate relation of Life with laws of chemical combination, & the universality of latter render spontaneous generation not improbable”. Like many of his contemporaries, Darwin rejected the idea that putrefaction of preexisting organ…

ZoologyWarm little pondSpontaneous generationBiology01 natural sciencesOrigin of species03 medical and health sciencesCharles darwinAbiogenesisOrigin of life0103 physical sciencesChemical combinationNatural (music)AnimalsHumansRelation (history of concept)010303 astronomy & astrophysicsAstronomy Observations and TechniquesEcology Evolution Behavior and Systematics030304 developmental biologySimple (philosophy)LiteratureLife Sciences general0303 health sciencesbusiness.industryFossilsLife SciencesGeneral MedicineSpecial Invited PaperEarth Sciences generalBiological EvolutionBiochemistry generalSpace and Planetary ScienceDarwin (ADL)Astrophysics and AstroparticlesbusinessDarwinOrigins of Life and Evolution of the Biosphere
researchProduct

SEARCH FOR A CORRELATION BETWEEN ANTARES NEUTRINOS AND PIERRE AUGER OBSERVATORY UHECRs ARRIVAL DIRECTIONS

2013

A multimessenger analysis optimized for a correlation of arrival directions of ultra-high energy cosmic rays (UHECRs) and neutrinos is presented and applied to 2190 neutrino candidate events detected in 2007-2008 by the ANTARES telescope and 69 UHECRs observed by the Pierre Auger Observatory between 2004 January 1 and 2009 December 31. No significant correlation is observed. Assuming an equal neutrino flux (E-2 energy spectrum) from all UHECR directions, a 90% CL upper limit on the neutrino flux of 5.0 x 10(-8) GeV cm(-2) s(-1) per source is derived.

AstrofísicaSELECTIONPOINT SOURCESTELESCOPE[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP]Astrophysics::High Energy Astrophysical Phenomenaastroparticle physics – cosmic rays – neutrinos[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP]FOS: Physical sciencesCosmic rayAstrophysicsPROPAGATIONACCELERATION7. Clean energy01 natural scienceslaw.inventionTelescopecosmic rayslaw0103 physical sciencesICECUBE DETECTORBURSTSNeutrinos010303 astronomy & astrophysicsCosmic raysPierre Auger ObservatoryAstroparticle physicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)NUCLEI010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyneutrinosastroparticle physicAstronomy and AstrophysicsGALACTIC MAGNETIC-FIELDMassless particleENERGY COSMIC-RAYSSpace and Planetary Scienceastroparticle physicsFISICA APLICADAHigh Energy Physics::ExperimentNeutrinoAstroparticle physicsAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)Lepton
researchProduct

Multimessenger Astronomy with Neutrinos

2021

Multimessenger astronomy is arguably the branch of the astroparticle physics field that has seen the most significant developments in recent years. In this manuscript, we will review the state-of-the-art, the recent observations, and the prospects and challenges for the near future. We will give special emphasis to the observation carried out with neutrino telescopes.

Astroparticle physicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Field (physics)Physics::Instrumentation and DetectorsAstrophysics::Instrumentation and Methods for AstrophysicsneutrinosElementary particle physicsGeneral Physics and AstronomyAstronomyFOS: Physical sciencesQC793-793.5astronomy_astrophysicsPhysics::History of Physicsastroparticle physicsmultimessenger astronomyNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Low-energy Neutrino Astronomy in LENA

2015

LENA (Low Energy Neutrino Astronomy) is a proposed next-generation neutrino detector based on 50 kilotons of liquid scintillator. The low detection threshold, good energy resolution and excellent background rejection inherent to the liquid-scintillator detectors make LENA a versatile observatory for low-energy neutrinos from astrophysical and terrestrial sources. In the framework of the European LAGUNA-LBNO design study, LENA is also considered as far detector for a very-long baseline neutrino beam from CERN to Pyhasalmi ¨ (Finland). The present contribution gives an overview LENA’s broad research program, highlighting the unique capabilities of liquid scintillator for the detection of low-…

LENAPhysicsParticle physicsta114Physics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologySolar neutrino problemPhysics and Astronomy(all)astroparticle physics. underground physicsNuclear physicslow-energy neutrino astronomyNeutrino detectorMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoNeutrino oscillationElectron neutrinoPhysics Procedia
researchProduct

The FRAM robotic telescope for atmospheric monitoring at the Pierre Auger Observatory

2021

FRAM (F/Photometric Robotic Atmospheric Monitor) is a robotic telescope operated at the Pierre Auger Observatory in Argentina for the purposes of atmospheric monitoring using stellar photometry. As a passive system which does not produce any light that could interfere with the observations of the fluorescence telescopes of the observatory, it complements the active monitoring systems that use lasers. We discuss the applications of stellar photometry for atmospheric monitoring at optical observatories in general and the particular modes of operation employed by the Auger FRAM. We describe in detail the technical aspects of FRAM, the hardware and software requirements for a successful operati…

AstronomyLarge detector systems for particle and astroparticle physics; Optics; Photon detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc); Real-time monitoringReal-time monitoring01 natural sciencesAugerSuccessful operationObservatoryopticalAPDshardwareAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsInstrumentationPhoton detectors for UVMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEEBCCDsSettore FIS/01 - Fisica SperimentalePhoton detectors for UV visible and IR photons (solid-state) (PIN diodes APDs Si-PMTs G-APDs CCDs EBCCDs EMCCDs CMOS imagers etc)Astrophysics::Instrumentation and Methods for AstrophysicsSi-PMTsAugerobservatoryRobotic telescopeG-APDsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaSciences exactes et naturellesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesprogrammingdetector: fluorescencePhotometry (optics)0103 physical sciencesddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]High Energy Physicsvisible and IR photons (solid-state) (PIN diodesCMOS imagersInstrumentation and Methods for Astrophysics (astro-ph.IM)Astrophysics::Galaxy AstrophysicsRemote sensingetc)fluorescence [detector]Pierre Auger Observatory010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsActive monitoringOpticsCCDslasermonitoringEMCCDsLarge detector systems for particle and astroparticle physicatmosphereExperimental High Energy PhysicsOpticEnvironmental science[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]RAIOS CÓSMICOSastro-ph.IM
researchProduct

Search for point-like sources of ultra-high energy neutrinos at the pierre auger observatory and improved limit on the diffuse flux of tau neutrinos

2012

The surface detector array of the Pierre Auger Observatory can detect neutrinos with energy Eν between 1017 eV and 1020 eV from point-like sources across the sky south of +55º and north of −65º declinations. A search has been performed for highly inclined extensive air showers produced by the interaction of neutrinos of all flavors in the atmosphere (downward-going neutrinos), and by the decay of tau leptons originating from tau neutrino interactions in Earth’s crust (Earth-skimming neutrinos). No candidate neutrinos have been found in data up to 2010 May 31. This corresponds to an equivalent exposure of ∼3.5 years of a full surface detector array for the Earth-skimming channel and ∼2 years…

Physics::Instrumentation and DetectorsSolar neutrinoAstronomyAstrophysics01 natural sciences7. Clean energyneutrinoTelescopiosTau neutrinoastroparticle physics; cosmic rays; neutrinos; telescopes010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)cosmic rayPhysics[PHYS]Physics [physics]High Energy Astrophysical Phenomena (astro-ph.HE)[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]neutrinosCOSMIC-RAYSCosmic neutrino backgroundastroparticle physicsMeasurements of neutrino speedFísica nuclearNeutrinoAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Radiación CósmicaAstrophysics::High Energy Astrophysical PhenomenaTELESCÓPIOSFOS: Physical sciencesAstroparticle physiccosmic rays0103 physical sciencesDETECTORCiencias ExactasPierre Auger Observatory010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaAstronomy and AstrophysicstelescopesSolar neutrino problem13. Climate actionSpace and Planetary ScienceExperimental High Energy PhysicsHigh Energy Physics::ExperimentAstroparticle physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Lepton
researchProduct

Effects of modified theories of gravity on neutrino pair annihilation energy deposition near neutron stars

2020

We study the neutrino pairs annihilation into electron-positron pairs ($\nu+{\bar \nu}\to e^- + e^+$) near the surface of a neutron star. The analysis is performed in the framework of extended theories of gravity. The latter induce a modification of the minimum photon-sphere radius ($R_{ph}$) and the maximum energy deposition rate near to $R_{ph}$, as compared to ones of General Relativity. These results might lead to an efficient mechanism for generating GRBs.

High Energy Astrophysical Phenomena (astro-ph.HE)Astroparticle physicsPhysicsParticle physicsAnnihilation010504 meteorology & atmospheric sciencesGeneral relativityHigh-energy astronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Radius01 natural sciencesGeneral Relativity and Quantum CosmologyNeutron starHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Space and Planetary Science0103 physical sciencesNeutrinoGamma-ray burstAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics0105 earth and related environmental sciences
researchProduct

Combined performance studies for electrons at the 2004 ATLAS combined test-beam

2010

In 2004 at the ATLAS (A Toroidal LHC ApparatuS) combined test beam, one slice of the ATLAS barrel detector (including an Inner Detector set-up and the Liquid Argon calorimeter) was exposed to particles from the H8 SPS beam line at CERN. It was the first occasion to test the combined electron performance of ATLAS. This paper presents results obtained for the momentum measurement p with the Inner Detector and for the performance of the electron measurement with the LAr calorimeter (energy E linearity and resolution) in the presence of a magnetic field in the Inner Detector for momenta ranging from 20 GeV/c to 100 GeV/c. Furthermore the particle identification capabilities of the Transition Ra…

Physics::Instrumentation and DetectorsCiências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]Transition radiation detectorsElectronsddc:500.201 natural sciencesParticle identificationNuclear physicsCalorimetersAtlas (anatomy)Particle tracking detectors0103 physical sciencesmedicine[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Detectors and Experimental Techniques010306 general physicsNuclear ExperimentInstrumentationDetectors de radiacióMathematical PhysicsPhysicsLarge Hadron ColliderScience & Technology010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsDetectorCalorimetermedicine.anatomical_structureTransition radiationBeamlineHigh Energy Physics::ExperimentBeam (structure)
researchProduct