Search results for "asymptotic safety"
showing 10 items of 37 documents
Background independent quantum field theory and gravitating vacuum fluctuations
2019
The scale dependent effective average action for quantum gravity complies with the fundamental principle of Background Independence. Ultimately the background metric it formally depends on is selected self-consistently by means of a suitable generalization of Einstein's equation. Self-consistent backround spacetimes are scale dependent, and therefore "going on-shell" at the points along a given renormalization group (RG) trajectory requires understanding two types of scale dependencies: the (familiar) direct one carried by the off-shell action functional, and an indirect one related to the self-consistent background geometry. This paper is devoted to a careful delineation and analysis of ce…
Is There a C-Function in 4D Quantum Einstein Gravity?
2016
We describe a functional renormalization group-based method to search for ‘C-like’ functions with properties similar to that in 2D conformal field theory. It exploits the mode counting properties of the effective average action and is particularly suited for theories including quantized gravity. The viability of the approach is demonstrated explicitly in a truncation of 4 dimensional Quantum Einstein Gravity, i.e. asymptotically safe metric gravity.
Geometric operators in the asymptotic safety scenario for quantum gravity
2019
We consider geometric operators, such as the geodesic length and the volume of hypersurfaces, in the context of the Asymptotic Safety scenario for quantum gravity. We discuss the role of these operators from the Asymptotic Safety perspective, and compute their anomalous dimensions within the Einstein-Hilbert truncation. We also discuss certain subtleties arising in the definition of such geometric operators. Our results hint to an effective dimensional reduction of the considered geometric operators.
R2phase diagram of quantum Einstein gravity and its spectral dimension
2012
Within the gravitational asymptotic safety program, the renormalization group (RG) flow of the ${R}^{2}$ truncation in three and four spacetime dimensions is analyzed in detail. In particular, we construct RG trajectories which emanate from the non-Gaussian UV fixed point and possess long classical regimes where the effective average action is well approximated by the classical Einstein-Hilbert action. As an application we study the spectral dimension of the effective quantum Einstein gravity spacetimes resulting from these trajectories, establishing that the picture of a multifractal spacetime is robust under the extension of the truncated theory space. We demonstrate that regimes of const…
Bimetric Renormalization Group Flows in Quantum Einstein Gravity
2011
The formulation of an exact functional renormalization group equation for Quantum Einstein Gravity necessitates that the underlying effective average action depends on two metrics, a dynamical metric giving the vacuum expectation value of the quantum field, and a background metric supplying the coarse graining scale. The central requirement of "background independence" is met by leaving the background metric completely arbitrary. This bimetric structure entails that the effective average action may contain three classes of interactions: those built from the dynamical metric only, terms which are purely background, and those involving a mixture of both metrics. This work initiates the first …
A new functional flow equation for Einstein-Cartan quantum gravity
2015
We construct a special-purpose functional flow equation which facilitates non-perturbative renormalization group (RG) studies on theory spaces involving a large number of independent field components that are prohibitively complicated using standard methods. Its main motivation are quantum gravity theories in which the gravitational degrees of freedom are carried by a complex system of tensor fields, a prime example being Einstein-Cartan theory, possibly coupled to matter. We describe a sequence of approximation steps leading from the functional RG equation of the Effective Average Action to the new flow equation which, as a consequence, is no longer fully exact on the untruncated theory sp…
The unitary conformal field theory behind 2D Asymptotic Safety
2015
Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in $d>2$ dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge $c=25$. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety progra…
Finite Entanglement Entropy in Asymptotically Safe Quantum Gravity
2018
Entanglement entropies calculated in the framework of quantum field theory on classical, flat or curved, spacetimes are known to show an intriguing area law in four dimensions, but they are also notorious for their quadratic ultraviolet divergences. In this paper we demonstrate that the analogous entanglement entropies when computed within the Asymptotic Safety approach to background independent quantum gravity are perfectly free from such divergences. We argue that the divergences are an artifact due to the over-idealization of a rigid, classical spacetime geometry which is insensitive to the quantum dynamics.
Bare Action and Regularized Functional Integral of Asymptotically Safe Quantum Gravity
2009
Investigations of Quantum Einstein Gravity (QEG) based upon the effective average action employ a flow equation which does not contain any ultraviolet (UV) regulator. Its renormalization group trajectories emanating from a non-Gaussian fixed point define asymptotically safe quantum field theories. A priori these theories are, somewhat unusually, given in terms of their effective rather than bare action. In this paper we construct a functional integral representation of these theories. We fix a regularized measure and show that every trajectory of effective average actions, depending on an IR cutoff only, induces an associated trajectory of bare actions which depend on a UV cutoff. Together …
Field Parametrization Dependence in Asymptotically Safe Quantum Gravity
2015
Motivated by conformal field theory studies we investigate Quantum Einstein Gravity with a new field parametrization where the dynamical metric is basically given by the exponential of a matrix-valued fluctuating field, $g_{\mu\nu}=\bar{g}_{\mu\rho}(e^h)^\rho_{\nu}$. In this way, we aim to reproduce the critical value of the central charge when considering $2+\epsilon$ dimensional spacetimes. With regard to the Asymptotic Safety program, we take special care of possible fixed points and new structures of the corresponding RG flow in $d=4$ for both single- and bi-metric truncations. Finally, we discuss the issue of restoring background independence in the bi-metric setting.