Search results for "attosecond"

showing 10 items of 22 documents

Attosecond Soft-X-Ray Spectroscopy in a Transition Metal Dichalcogenide

2019

Information about the real-time response of carriers to optical fields is paramount to advance information processing or to understand the bottlenecks of light-matter interaction and energy harvesting. Transition-metal dichalcogenide (TMDC) compounds are an emerging class of materials with attractive structural and electronic properties that can be thinned to the 2D limit and TiS 2 is a paradigmatic example for a semi-metallic TMDC, since its electron mobility ranges between that of a metal and a semiconductor.

0303 health sciencesElectron mobilitySoft x rayMaterials sciencebusiness.industryAttosecond01 natural sciences03 medical and health sciencesSemiconductorTransition metal0103 physical sciencesOptoelectronicsIntegrated optics010306 general physicsbusinessSpectroscopy030304 developmental biologyElectronic properties2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)
researchProduct

Bremsstrahlung from a repulsive potential: attosecond pulse generation

2008

The collision of an electron against a repulsive potential in the presence of a laser field is investigated. It is found that a sufficiently strong laser field forces the electron to remain in the neighbourhood of the repulsive potential causing bremsstrahlung. By appropriately filtering the emitted signal, an electron in the presence of a repulsive potential is capable of generating attosecond pulses.

Condensed Matter::Quantum GasesPhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciField (physics)Condensed matter physicsBremsstrahlungAttosecondBremsstrahlungPhysics::OpticsNonlinear opticsElectronCondensed Matter PhysicsLaserSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and Opticslaw.inventionParticle accelerationgenerazione di attosecondilawPhysics::Atomic PhysicsAtomic physicsUltrashort pulseJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

Efficient attosecond pulse generation from HHG spectra

2015

High harmonics generation attosecond pulse
researchProduct

Ab Initio Simulation of Attosecond Transient Absorption Spectroscopy in Two-Dimensional Materials

2018

We extend the first-principles analysis of attosecond transient absorption spectroscopy to two-dimensional materials. As an example of two-dimensional materials, we apply the analysis to monolayer hexagonal boron nitride (h-BN) and compute its transient optical properties under intense few-cycle infrared laser pulses. Nonadiabatic features are observed in the computed transient absorption spectra. To elucidate the microscopic origin of these features, we analyze the electronic structure of h-BN with density functional theory and investigate the dynamics of specific energy bands with a simple two-band model. Finally, we find that laser-induced intraband transitions play a significant role in…

Materials scienceattosecond transient absorption spectroscopyAttosecondAb initioFOS: Physical sciences02 engineering and technologyElectronic structure01 natural sciencesMolecular physicslcsh:TechnologySettore FIS/03 - Fisica Della Materialcsh:Chemistry0103 physical sciencesUltrafast laser spectroscopyGeneral Materials Science010306 general physicsSpectroscopyInstrumentationlcsh:QH301-705.5Fluid Flow and Transfer ProcessesCondensed Matter - Materials Sciencelcsh:TProcess Chemistry and TechnologyGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)Time-dependent density functional theory021001 nanoscience & nanotechnologylcsh:QC1-999Computer Science Applicationstime-dependent density functional theoryfirst-principles simulationlcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Density functional theoryTransient (oscillation)0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:PhysicsOptics (physics.optics)Physics - OpticsApplied Sciences
researchProduct

Attosecond state-resolved carrier motion in quantum materials probed by soft x-ray XANES

2021

Recent developments in attosecond technology led to tabletop X-ray spectroscopy in the soft X-ray range, thus uniting the element- and state-specificity of core-level x-ray absorption spectroscopy with the time resolution to follow electronic dynamics in real time. We describe recent work in attosecond technology and investigations into materials such as Si, SiO2, GaN, Al2O3, Ti, TiO2, enabled by the convergence of these two capabilities. We showcase the state-of-the-art on isolated attosecond soft x-ray pulses for x-ray absorption near edge spectroscopy (XANES) to observe the 3d-state dynamics of the semi-metal TiS2 with attosecond resolution at the Ti L-edge (460 eV). We describe how the …

Phase transitionMaterials scienceAbsorption spectroscopyAttosecondGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyElectron01 natural sciences7. Clean energy0103 physical sciencesSpectroscopy010302 applied physicsCondensed Matter - Materials Science:Física [Àrees temàtiques de la UPC]business.industryX-RaysMaterials Science (cond-mat.mtrl-sci)FísicaÒptica021001 nanoscience & nanotechnologyBrillouin zoneSemiconductorx-rayCharge carrierRaigs XAtomic physics0210 nano-technologybusiness
researchProduct

Tailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra

2016

Recent advances in laser technology allow us to follow electronic motion at its natural time-scale with ultra-fast time resolution, leading the way towards attosecond physics experiments of extreme precision. In this work, we assess the use of tailored pumps in order to enhance (or reduce) some given features of the probe absorption (for example, absorption in the visible range of otherwise transparent samples). This type of manipulation of the system response could be helpful for its full characterization, since it would allow us to visualize transitions that are dark when using unshaped pulses. In order to investigate these possibilities, we perform first a theoretical analysis of the non…

Physics010304 chemical physicsSolid-state physicsAtomic Physics (physics.atom-ph)AttosecondQuantum dynamicsComplex systemFOS: Physical sciencesContext (language use)Time-dependent density functional theoryCondensed Matter Physics01 natural sciences7. Clean energySettore FIS/03 - Fisica Della MateriaPhysics - Atomic Physics3. Good healthElectronic Optical and Magnetic MaterialsCharacterization (materials science)Computational physicsCondensed Matter - Other Condensed Matter0103 physical sciences010306 general physicsAbsorption (electromagnetic radiation)Other Condensed Matter (cond-mat.other)Computational MethodsThe European Physical Journal B
researchProduct

Attosecond control of dissociative ionization of O2molecules

2011

We demonstrate that dissociative ionization of O(2) can be controlled by the relative delay between an attosecond pulse train (APT) and a copropagating infrared (IR) field. Our experiments reveal a dependence of both the branching ratios between a range of electronic states and the fragment angular distributions on the extreme ultraviolet (XUV) to IR time delay. The observations go beyond adiabatic propagation of dissociative wave packets on IR-induced quasistatic potential energy curves and are understood in terms of an IR-induced coupling between electronic states in the molecular ion.

PhysicsInfraredAtom and Molecular Physics and OpticsWave packetAttosecondAstrophysics::Cosmology and Extragalactic AstrophysicsElectronic structureMolecular physicsPotential energySettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsTime resolved fragmentationAtomic and Molecular PhysicsExtreme ultravioletIonizationPhysics::Atomic and Molecular ClustersAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary Astrophysicsand OpticsAtomic physicsAdiabatic processAstrophysics::Galaxy AstrophysicsPhysical Review A
researchProduct

Time- and energy resolved photoemission electron microscopy-imaging of photoelectron time-of-flight analysis by means of pulsed excitations

2010

Abstract The present work enlightens the developments in time- and energy resolved photoemission electron microscopy over the past few years. We describe basic principles of the technique and demonstrate different applications. An energy- and time-filtering photoemission electron microscopy (PEEM) for real-time spectroscopic imaging can be realized either by a retarding field or hemispherical energy analyzer or by using time-of-flight optics with a delay line detector. The latter method has the advantage of no data loss at all as all randomly incoming particles are measured not only by position but also by time. This is of particular interest for pump–probe experiments in the femtosecond an…

PhysicsRadiationbusiness.industryAttosecondDetectorElectronCondensed Matter PhysicsLaserSpace chargeAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionTime of flightPhotoemission electron microscopyOpticslawFemtosecondPhysical and Theoretical ChemistrybusinessSpectroscopyJournal of Electron Spectroscopy and Related Phenomena
researchProduct

A three-colour scheme to generate isolated attosecond pulses

2009

We propose a new scheme to produce isolated attosecond pulses, involving the use of three laser pulses: a fundamental laser field of intensity I = 3.5 × 1014 W cm−2 and of wavelength λ = 820 nm, and two properly chosen weak lasers with wavelengths 1.5λ and 0.5λ. The three lasers have a Gaussian envelope of 36 fs full width at half maximum. The resulting total field is an asymmetric electric field with an isolated peak. We show that a model atom, interacting with the above-defined total field, generates an isolated attosecond pulse as short as 1/10 of a laser period, i.e. approximately 270 as.

PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciField (physics)business.industryAttosecondAttosecond pulses lasersCondensed Matter PhysicsLaserAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della Materialaw.inventionWavelengthFull width at half maximumOpticslawElectric fieldAtombusinessEnvelope (waves)
researchProduct

Generation of isolated attosecond pulses using unipolar and laser fields

2009

A new scheme to generate isolated attosecond pulses is presented that involves the use of a laser field and of a unipolar field. The laser field has a pulse of intensity I = 1.5×1014 W cm−2 and wavelength λ = 820 nm. The unipolar pulse is an asymmetric pulse consisting of a sharp peak, lasting approximately half a laser period, i.e. nearly 1.4 fs, followed by a long and shallow tail. We show that on combining these two fields, it is possible to generate isolated attosecond pulses as short as 1/10 of a laser period, i.e. approximately 270 as. Moreover, it is argued that this scheme is robust either against small variations of the laser envelope, or against small changes in the delay between …

PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciField (physics)business.industryAttosecondGenerazione di attosecondiLaser pumpingLaserAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaPulse (physics)law.inventionIntensity (physics)laserWavelengthOpticslawbusinessEnvelope (waves)
researchProduct