Search results for "attractor"
showing 10 items of 162 documents
On the Kneser property for reaction–diffusion systems on unbounded domains
2009
Abstract We prove the Kneser property (i.e. the connectedness and compactness of the attainability set at any time) for reaction–diffusion systems on unbounded domains in which we do not know whether the property of uniqueness of the Cauchy problem holds or not. Using this property we obtain that the global attractor of such systems is connected. Finally, these results are applied to the complex Ginzburg–Landau equation.
Asymptotic Behaviour of a Logistic Lattice System
2014
In this paper we study the asymptotic behaviour of solutions of a lattice dynamical system of a logistic type. Namely, we study a system of in nite ordinary di erential equations which can be obtained after the spatial discretization of a logistic equation with di usion. We prove that a global attractor exists in suitable weighted spaces of sequences.
On Differential Equations with Delay in Banach Spaces and Attractors for Retarded Lattice Dynamical Systems
2014
In this paper we first prove a rather general theorem about existence of solutions for an abstract differential equation in a Banach space by assuming that the nonlinear term is in some sense weakly continuous. We then apply this result to a lattice dynamical system with delay, proving also the existence of a global compact attractor for such system.
Areal Typology and Grammaticalization
1996
Grammaticalization processes in East and mainland South East Asian languages show remarkable areal parallels within the domain of the verb and the noun. Since language contact increases processes of reanalysis it supports grammaticalization and its cross-linguistic similarity. Grammaticalization processes are governed by attractor positions (cf. 1.1.3.) and pathways of grammaticalization (cf. 1.1..4.). The former is a good parameter for making areal distinctions, the latter is of areal relevance only within the domain of the verb. Because of attractor positions, grammaticalization processes are not necessarily slow and gradual. The distribution of attractor positions relative to each other …
Génétique des textes et système chaotique
2016
Textual genetics and chaotic system Although we share Louis Hay's idea that it is impossible to homologate and systematize the operations which can be observed in manuscripts, it is however possible to interpret whatever creation process in terms of the passage from entropy to order. The possibility of an analogy between text and chaotic system had been advanced by Noëlle Batt according to whom each work actually satisfies the principles of the chaotic system. It is starting from such principles that we will try to show the analogy between chaotic system and textual genetics: 1. The fact that we are dealing with an evolving system (with variables and permanent features) endowed with a tempo…
The Lyapunov dimension formula for the global attractor of the Lorenz system
2015
The exact Lyapunov dimension formula for the Lorenz system has been analytically obtained first due to G.A.Leonov in 2002 under certain restrictions on parameters, permitting classical values. He used the construction technique of special Lyapunov-type functions developed by him in 1991 year. Later it was shown that the consideration of larger class of Lyapunov-type functions permits proving the validity of this formula for all parameters of the system such that all the equilibria of the system are hyperbolically unstable. In the present work it is proved the validity of the formula for Lyapunov dimension for a wider variety of parameters values, which include all parameters satisfying the …
Dynamics of the Shapovalov mid-size firm model
2020
Forecasting and analyses of the dynamics of financial and economic processes such as deviations of macroeconomic aggregates (GDP, unemployment, and inflation) from their long-term trends, asset markets volatility, etc., are challenging because of the complexity of these processes. Important related research questions include, first, how to determine the qualitative properties of the dynamics of these processes, namely, whether the process is stable, unstable, chaotic (deterministic), or stochastic; and second, how best to estimate its quantitative indicators including dimension, entropy, and correlation characteristics. These questions can be studied both empirically and theoretically. In t…
Study of irregular dynamics in an economic model: attractor localization and Lyapunov exponents
2021
Cyclicity and instability inherent in the economy can manifest themselves in irregular fluctuations, including chaotic ones, which significantly reduces the accuracy of forecasting the dynamics of the economic system in the long run. We focus on an approach, associated with the identification of a deterministic endogenous mechanism of irregular fluctuations in the economy. Using of a mid-size firm model as an example, we demonstrate the use of effective analytical and numerical procedures for calculating the quantitative characteristics of its irregular limiting dynamics based on Lyapunov exponents, such as dimension and entropy. We use an analytical approach for localization of a global at…
Numerical analysis of dynamical systems: unstable periodic orbits, hidden transient chaotic sets, hidden attractors, and finite-time Lyapunov dimensi…
2018
In this article, on the example of the known low-order dynamical models, namely Lorenz, Rossler and Vallis systems, the difficulties of reliable numerical analysis of chaotic dynamical systems are discussed. For the Lorenz system, the problems of existence of hidden chaotic attractors and hidden transient chaotic sets and their numerical investigation are considered. The problems of the numerical characterization of a chaotic attractor by calculating finite-time time Lyapunov exponents and finite-time Lyapunov dimension along one trajectory are demonstrated using the example of computing unstable periodic orbits in the Rossler system. Using the example of the Vallis system describing the El…
Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system
2015
The Rabinovich system, describing the process of interaction between waves in plasma, is considered. It is shown that the Rabinovich system can exhibit a {hidden attractor} in the case of multistability as well as a classical {self-excited attractor}. The hidden attractor in this system can be localized by analytical-numerical methods based on the {continuation} and {perpetual points}. For numerical study of the attractors' dimension the concept of {finite-time Lyapunov dimension} is developed. A conjecture on the Lyapunov dimension of self-excited attractors and the notion of {exact Lyapunov dimension} are discussed. A comparative survey on the computation of the finite-time Lyapunov expon…