Search results for "automatic"
showing 10 items of 730 documents
Considerations on the optimization of natural gas deliveries by using automated control systems
2019
The current paper aims at optimizing the natural gas deliveries from an underground storage by implementing automated control systems and fiscal measurement systems according to the harmonized European legislation in the area of metrology. In the first part, the authors have carried out an analysis regarding the state of the art at international level with regard to technical solutions for optimizing the deliveries of natural gas by means of a constriction element of a measurement panel. In the following, a software application was created for monitoring the parameters taken from the process gas chromatograph and transferring them to the flow computer by implementing software filters. The n…
Partial Stabilization of Input-Output Contact Systems on a Legendre Submanifold
2017
This technical note addresses the structure preserving stabilization by output feedback of conservative input-output contact systems, a class of input-output Hamiltonian systems defined on contact manifolds. In the first instance, achievable contact forms in closed-loop and the associated Legendre submanifolds are analysed. In the second instance the stability properties of a hyperbolic equilibrium point of a strict contact vector field are analysed and it is shown that the stable and unstable manifolds are Legendre submanifolds. In the third instance the consequences for the design of stable structure preserving output feedback are derived: in closed-loop one may achieve stability only rel…
Adaptive-Gain Observers and Applications
2007
We distinguish two kinds of observers for nonlinear systems which are used by scientists and engineers: empirical observers and converging observers.
Robust Network Agreement on Logical Information
2011
Abstract Logical consensus is an approach to distributed decision making which is based on the availability of a network of agents with incomplete system knowledge. The method requires the construction of a Boolean map which defines a dynamic system allowing the entire network to consent on a unique, global decision. Previous work by the authors proved the method to be viable for applications such as intrusion detection within a structured environment, when the agent's communication topology is known in advance. The current work aims at providing a fully distributed protocol, requiring no a priori knowledge of each agent's communication neighbors. The protocol allows the construction of a r…
Feasibility Analysis For Constrained Model Predictive Control Based Motion Cueing Algorithm
2019
International audience; This paper deals with motion control for an 8-degree-of-freedom (DOF) high performance driving simulator. We formulate a constrained optimal control that defines the dynamical behavior of the system. Furthermore, the paper brings together various methodologies for addressing feasibility issues arising in implicit model predictive control-based motion cueing algorithms.The implementation of different techniques is described and discussed subsequently. Several simulations are carried out in the simulator platform. It is observed that the only technique that can provide ensured closed-loop stability by assuring feasibility over all prediction horizons is a braking law t…
Adaptive-gain extended Kalman filter: Extension to the continuous-discrete case
2009
In the present article we propose a nonlinear observer that merges the behaviors 1) of an extended Kalman filter, mainly designed to smooth off noise , and 2) of high-gain observers devoted to handle large perturbations in the state estimation. We specifically aim at continuous-discrete systems. The strategy consists in letting the high-gain self adapt according to the innovation. We define innovation computed over a time window and justify its usage via an important lemma. We prove the general convergence of the resulting observer.
Comparison of Model-Based Simultaneous Position and Stiffness Control Techniques for Pneumatic Soft Robots
2020
Soft robots have been extensively studied for their ability to provide both good performance and safe human-robot interaction. In this paper, we present and compare the performance of two model-based control techniques with the common aim to independently and simultaneously control position and stiffness of a pneumatic soft robot’s joint. The dynamic system of a robot arm with flexible joints actuated by a pneumatic antagonistic pair of actuators, so-called McKibben artificial muscles, will be regarded, while its dynamic parameters will be considered imprecise. Simulation results are provided to verify the performance of the algorithms.
Adaptive Robot Control – An Experimental Comparison
2012
This paper deals with experimental comparison between stable adaptive controllers of robotic manipulators based on Model Based Adaptive, Neural Network and Wavelet -Based control. The above control methods were compared with each other in terms of computational efficiency, need for accurate mathematical model of the manipulator and tracking performances. An original management algorithm of the Wavelet Network control scheme has been designed, with the aim of constructing the net automatically during the trajectory tracking, without the need to tune it to the trajectory itself. Experimental tests, carried out on a planar two link manipulator, show that the Wavelet-Based control scheme, with…
Tutorial on dynamic analysis of the Costas loop
2016
Abstract Costas loop is a classical phase-locked loop (PLL) based circuit for carrier recovery and signal demodulation. The PLL is an automatic control system that adjusts the phase of a local signal to match the phase of the input reference signal. This tutorial is devoted to the dynamic analysis of the Costas loop. In particular the acquisition process is analyzed. Acquisition is most conveniently described by a number of frequency and time parameters such as lock-in range, lock-in time, pull-in range, pull-in time, and hold-in range. While for the classical PLL equations all these parameters have been derived (many of them are approximations, some even crude approximations), this has not…
Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment
2012
International audience; Rotation estimation is a fundamental step for various robotic applications such as automatic control of ground/aerial vehicles, motion estimation and 3D reconstruction. However it is now well established that traditional navigation equipments, such as global positioning systems (GPSs) or inertial measurement units (IMUs), suffer from several disadvantages. Hence, some vision-based works have been proposed recently. Whereas interesting results can be obtained, the existing methods have non-negligible limitations such as a difficult feature matching (e.g. repeated textures, blur or illumination changes) and a high computational cost (e.g. analyze in the frequency domai…