Search results for "aw"

showing 10 items of 28285 documents

New progress of high current gasdynamic ion source (invited).

2016

The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 1013 cm−3 ) …

010302 applied physicsMaterials scienceta114ta213ion beamsPlasma01 natural sciencesIon sourceElectron cyclotron resonance010305 fluids & plasmaslaw.inventionIonlawGyrotronIonizationgasdynamic ECRIS0103 physical scienceselectron cyclotron resonance ion sourcesThermal emittanceAtomic physicsInstrumentationMicrowaveThe Review of scientific instruments
researchProduct

2020

Time-resolved photoemission with ultrafast pump and probe pulses is an emerging technique with wide application potential. Real-time recording of nonequilibrium electronic processes, transient states in chemical reactions, or the interplay of electronic and structural dynamics offers fascinating opportunities for future research. Combining valence-band and core-level spectroscopy with photoelectron diffraction for electronic, chemical, and structural analyses requires few 10 fs soft X-ray pulses with some 10 meV spectral resolution, which are currently available at high repetition rate free-electron lasers. We have constructed and optimized a versatile setup commissioned at FLASH/PG2 that c…

010302 applied physicsMicroscopePhotonMaterials scienceResolution (electron density)Free-electron laserLaser01 natural sciences010305 fluids & plasmaslaw.inventionMomentumTime of flightlaw0103 physical sciencesAtomic physicsInstrumentationUltrashort pulseReview of Scientific Instruments
researchProduct

Atomic, electronic and magnetic structure of an oxygen interstitial in neutron-irradiated Al2O3 single crystals

2020

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreement No. 633053 and Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion application”. The views and opinions expressed herein do not necessarily reflect those of the European Commission. In addition, the research leading to these results has received funding from the Estonian Research Council grant (PUT PRG619).

010302 applied physicsMultidisciplinaryMaterials scienceMagnetic momentMagnetic structurelcsh:Rlcsh:MedicineFormal charge02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicslaw.inventionIonBond lengthlaw0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Density functional theorylcsh:Q0210 nano-technologyElectron paramagnetic resonanceGround statelcsh:ScienceScientific Reports
researchProduct

A New Multipactor Effect Model for Dielectric-Loaded Rectangular Waveguides

2019

Multipactor is an electron discharge that may appear in particle accelerators and microwave devices such as filters, multiplexers, and RF satellite payloads in satellite on-board equipment under vacuum conditions. When some resonance conditions are satisfied, secondary electrons get synchronized with the RF fields, and the electron population inside the device grows exponentially leading to a multipactor discharge. This multipactor discharge has some negative effects that degrade the device performance: increase of signal noise and reflected power, heating of the device walls, outgassing, detuning of resonant cavities, and even the partial or total destruction of the component. The main aim…

010302 applied physicsMultipactor effectMaterials sciencebusiness.industryParticle acceleratorElectron01 natural sciencesSignalSecondary electrons010305 fluids & plasmaslaw.inventionOutgassingOpticslaw0103 physical sciencesbusinessNoise (radio)Microwave2019 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)
researchProduct

Comparative study of the luminescence properties of macro- and nanocrystalline MgO using synchrotron radiation

2013

MgO nano-powder with an average crystallite size of nanoparticles ranging 10-15 nm was synthesized using the extractive-pyrolytic method and was studied by room temperature VUV spectroscopy under synchrotron radiation excitation. Comparative analysis of their luminescent properties with that of mac- rocrystalline powder analogues and an MgO single crystal, grown by the arc-fusion method, has been per- formed under excitation by pulsed VUV synchrotron radiation. Special attention was paid to VUV spectral range, which is not reachable with commonly used lamp and laser sources. A considerable blue shift of about 0.3 eV in the excitation spectra of 2.95 eV emission band, was revealed in nanocry…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceAnalytical chemistrySynchrotron radiation02 engineering and technology021001 nanoscience & nanotechnologyLaser01 natural sciencesNanocrystalline materiallaw.inventionlaw0103 physical sciencesddc:530Crystallite0210 nano-technologyLuminescenceSpectroscopyInstrumentationSingle crystalExcitationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Creation and thermal annealing of structural defects in neutron-irradiated MgAl 2 O 4 single crystals

2018

Abstract Several novel hole-type defects (a hole localized at a regular oxygen ion near a negatively charged structural defect) have been revealed in fast neutron irradiated MgAl2O4 crystals using the EPR method. The pulse annealing of the EPR signal of these centers was compared to that of radiation induced optical absorption in the same crystals. Taking into account the determined models of V1, V2 and V22 paramagnetic centers, the tentative scenario of the thermal annealing process of neutron-induced defects (hole-type and complementary electron F-type ones) is proposed. In addition, one more paramagnetic hole center consisting of an Al|Mg as-grown antisite defect near an aluminum vacancy…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceAnnealing (metallurgy)Astrophysics::High Energy Astrophysical Phenomenachemistry.chemical_element02 engineering and technologyElectron021001 nanoscience & nanotechnology01 natural sciencesMolecular physicslaw.inventionCondensed Matter::Materials ScienceCrystallographyParamagnetismchemistrylawAluminiumVacancy defect0103 physical sciencesNeutronIrradiation0210 nano-technologyElectron paramagnetic resonanceInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

EPR and optical spectroscopy of neutron-irradiated Gd3Ga5O12 single crystals

2020

Abstract In this paper, we have performed comparative analysis of EPR, optical absorption (OA) and luminescence spectra for a series of Gd3Ga5O12 (GGG) single crystals irradiated with fast neutrons with fluencies varied from 1016 to 1020n/cm2. In a crystal irradiated with the maximum neutron fluence, the EPR spectra demonstrated the formation of several paramagnetic defects. In particular, EPR spectrum shows a strong resonance at (effective) g ≈ 1.4 with practically isotropic behavior in the crystal rotation around the [1 1 1] direction (magnetic field being perpendicular to [1 1 1]) and several weaker lines in the g ≈ 1.1–2.6 region, which show more pronounced angular dependences. While th…

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencePhotoluminescenceResonance02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsNeutron temperaturelaw.inventionCrystalParamagnetismlaw0103 physical sciences0210 nano-technologySpectroscopyLuminescenceElectron paramagnetic resonanceInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Comparison of Single Event Transients Generated at Four Pulsed-Laser Test Facilities-NRL, IMS, EADS, JPL

2012

Four pulsed-laser single-event effects systems, differing in wavelength and pulse width, were used to generate single event transients in a large-area silicon photodiode and an operational amplifier (LM124) to determine how transient amplitude and charge collection varied among the different systems. The optical wavelength and the focused spot size are the primary factors influencing the resultant charge density profile. In the large-area photodiode the transients can be distorted by high charge-injection densities that occur for tightly focused, higher energy optical pulses. When the incident laser-pulse energies are corrected for reflection losses and photon efficiency, with collection de…

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencePhotonta114010308 nuclear & particles physicsbusiness.industryTransistorLaser01 natural sciences7. Clean energy[SPI.TRON]Engineering Sciences [physics]/Electronicslaw.inventionPhotodiodeSemiconductor laser theoryWavelengthOpticsNuclear Energy and Engineeringlaw0103 physical sciencesOptoelectronicsTransient (oscillation)Electrical and Electronic EngineeringbusinessPulse-width modulationIEEE Transactions on Nuclear Science
researchProduct

Radiation resistance of nanolayered silicon nitride capacitors

2020

Abstract Single-layered and multi-layered 20–60 nm thick silicon nitride (Si3N4) dielectric nanofilms were fabricated using a low-pressure chemical vapour deposition (LPCVD) method. The X-ray photoelectron spectroscopy (XPS) confirmed less oxygen content in the multi-layered nanofilms. The capacitors with Si3N4 multilayer demonstrated a tendency to a higher breakdown voltage compared to the capacitors with Si3N4 single layer. Si3N4 nanofilms and capacitors with Si3N4 dielectric were exposed to 1 kGy dose of gamma photons. Fourier transform infrared (FTIR) spectroscopy analysis showed that no modifications of the chemical bonds of Si3N4 were present after irradiation. Also, gamma irradiation…

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencebusiness.industry02 engineering and technologyDielectricChemical vapor deposition021001 nanoscience & nanotechnology01 natural sciencesCapacitancelaw.inventionchemistry.chemical_compoundCapacitorSilicon nitridechemistrylaw0103 physical sciencesOptoelectronicsBreakdown voltageIrradiation0210 nano-technologybusinessInstrumentationRadiation resistanceNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Electromechanical properties of Na 0.5 Bi 0.5 TiO 3 -SrTiO 3 -PbTiO 3 solid solutions

2018

Abstract Thorough studies of electric field-induced strain are presented in 0.4Na1/2Bi1/2TiO3-(0.6-x)SrTiO3-xPbTiO3 (NBT-ST-PT) ternary solid solutions. The increase of concentration of lead x induces crossover from relaxor to ferroelectric. Strain in a relaxor state can be described by electrostrictive behavior. The electrostrictive coefficients correspond to other well-known relaxor ferroelectrics. The concentration region with a stable ferroelectric phase revealed that the polarization dependence of strain does not exhibit nonlinearity, although they are inherent to the electric field dependence of strain. In this case, electric field dependence of strain is described in terms of the Ray…

010302 applied physicsPhase transitionMaterials scienceElectrostrictionCondensed matter physicsRayleigh law02 engineering and technologyGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesFerroelectricitySodium bismuth titanatechemistry.chemical_compoundsymbols.namesakeDomain wall (magnetism)chemistryElectric fieldPhase (matter)0103 physical sciencessymbolsGeneral Materials Science0210 nano-technologyJournal of Physics and Chemistry of Solids
researchProduct